吴永良,田景春,朱迎堂.神经网络判识沉积微相的应用——以桩241块为例[J].地质找矿论丛,2009,24(4):317-321
神经网络判识沉积微相的应用——以桩241块为例
APPLICATION OF THE NEURAL NET-DISCRIMATED MICRO-SEDIMENTARY FACIES——A CASE OF BLOCK Z241
投稿时间:2008-11-28  
DOI:10.6053/j.issn.1001-1412.2009.4. 009
中文关键词:  神经网络  沉积微相
英文关键词:neural net  micro-sedimentary facies
基金项目:
作者单位
吴永良 成都理工大学, 沉积研究院, 成都, 610059 
田景春 成都理工大学, 沉积研究院, 成都, 610059
成都理工大学, 油气藏地质与开发工程国家重点实验室, 成都, 610059 
朱迎堂 成都理工大学, 沉积研究院, 成都, 610059
成都理工大学, 油气藏地质与开发工程国家重点实验室, 成都, 610059 
摘要点击次数: 1285
全文下载次数: 2059
中文摘要:
      沉积相研究是油气勘探开发中一项十分重要的任务。在桩241块初次利用神经网络模式识别法进行测井微相识别,将识别后的结果与岩心微相划分结果相对比,测井相的识别完全满足研究的需要,为密井网条件下沉积微相划分提供了一种新的思路和方法。采用神经网络判识沉积微相技术,可以提高沉积微相的分析和解释精度。
英文摘要:
      Study on sedimentary facies is a main subject of the oil-gas exploration.Neural net discrimination of micro-sedimentary facies is first applied to block Z241.The neural net-discriminated results can be correlated with the well-logged micro-sedimentary facies and meet completely the need of the study thus provides a new thought and a technique for micro-sedimentary facies division under close exploration well net condition.The technique is playing an important role in improving efficiency and accuracy of analysis and interpretation of the micro-sedimentary facies.
查看全文  查看/发表评论  下载PDF阅读器
关闭