Contributions to Geology and Mineral Resources Research

 $doi: 10.6053/j. \ issn. \ 1001-1412. \ 2024. \ 04. \ 007$

贵州东部黑色岩系中钒矿层 地球化学特征及意义

鲜绍军1,罗俊峰1,刘玲2,蒲庆隆1

(1. 贵州省有色金属和核工业地质勘查局地质矿产勘查院,贵阳 550005;2. 贵州省有色金属和核工业地质勘查局,贵阳 550005)

摘要: 为探讨贵州东部黑色岩系中钒金属矿层形成的沉积环境与成矿作用,对典型矿床矿层及 顶底页岩样品采用电感耦合等离子质谱仪进行系统的微量元素、稀土元素分析测试。结果表明: 钒多金属含矿层沉积环境为缺氧的还原环境,受热水作用影响,钒矿层在海平面上升的情况下形成,是在正常成岩过程中叠加的一次成矿作用,与海底热液活动和海水深度密切相关。钒金属矿 层与顶底页岩在成岩作用、后生作用甚至表生作用中元素迁移等复杂的元素重新分配上密切一 致。

关键词: 黑色岩系;钒金属层;微量元素;稀土元素;地球化学特征;贵州 中图分类号: P595;P618.61 文献标识码: A

0 引言

贵州下寒武统发育有一套严格受时代和层位控制,高度富集 Mo、Ni、V 等元素的黑色岩系。按含 矿岩性特征、矿物赋存状态、岩性组合关系等因素可 划分为:①黄铁矿型镍钼矿层,主要分布在纳雍-织 金-清镇、遵义松林-金沙岩孔以及开阳一带;②碳质 黏土型钼钒矿层,主要分布在石阡-余庆一带;③黏 土、硅质岩型钒矿层,主要分布在铜仁-玉屏-天柱-黄平-凯里一带;④磷块岩型钒矿层,主要分布在织 金一带。长期以来,下寒武统黑色岩系多金属富集 层的成因一直存在争议^[1-7],本次工作在碳质黏土型 钼钒矿及黏土、硅质岩型钒矿层的典型矿床进行采 样,分析测试微量元素、稀土元素,并对各类比值和 规律进行总结,以研究贵州东部黑色岩系中钒多金 属矿层地球化学特征及意义。

1 地质背景

贵州自震旦纪开始出现了碳酸盐岩沉积与陆源 碎屑沉积、浅水台地沉积与深水盆地型沉积、海相活 动性沉积与海相稳定性沉积并存的格局,东部主要 为较深水半活动性的陆源碎屑沉积。牛蹄塘时期出 现了一次短暂伸展运动,导致海底扩张加剧,出现热 水喷流,全球海平面上升,形成了一套分布较广的黑 色岩系,其下部含 Mo、Ni、V 等多金属矿层,成矿时 期为早寒武世梅树村期及南皋期,赋矿地层主要为 下寒武统牛蹄塘组、渣拉沟组下部,老堡组上部亦有 似层状、透镜状矿体,产出构造部位多为褶皱翼部。

2 研究区地质

研究区北部构造形迹主要为褶皱、断层、劈理

收稿日期: 2024-04-03; 责任编辑: 沈名星

基金项目: 贵州省新一轮找矿突破战略行动地勘基金项目(黔自然资函[2022]632 号)资助。

作者简介: 鲜绍军(1985—),男,高级工程师,主要从事矿产勘查工作。E-mail;81110645@qq.com

通信作者: 罗俊峰(1985-),男,高级工程师,主要从事矿产勘查工作。E-mail:363964899@qq.com

等,线性构造主要方向为 NE 向、NNE 向、近 SN 向,构造样式以隔槽式褶皱组合为主,间有阿尔卑斯 复式褶皱组合及一些变形相对较弱的穹盆构造,部 分为短轴背向斜组合;南部主要为褶皱、断层、劈理、 韧性剪切带、过渡性剪切带、变质核杂岩等构造,线 性构造主要方向有 NNE - NE 向、NW 向,构造样式 以开阔型阿尔卑斯复式褶皱组合为特征。区内出露 地层从青白口系下江群到第四系均有,寒武系沉积 厚度一般为 1000~2000 m。

钒矿层的形成严格受层位和时代的控制,赋矿 地层的出露控制了钒矿床的分布(图1)。松桃-玉 屏-丹寨以西地区含矿地层为牛蹄塘组、老堡组,岩 性以黑色页岩为主,偶夹砂质或硅质页岩,下部为高 碳质页岩,或夹石煤,偶夹硅质页岩,中上部为碳质 页岩偶含砂质或呈碳质黏土岩,夹少量黄绿或灰绿 色砂质页岩,与下伏灯影组或老堡组硅质岩呈整合 或平行不整合(局部)接触,厚数十米至百余米;南东 地区含矿地层为渣拉沟组,岩性以黑色碳质页岩为 主,夹少量硅质岩或砂质页岩,含较多的黄铁矿晶 粒,向上碳质逐渐减少,层次增厚,砂质增多,为含粉 砂质碳质黏土岩,常呈球形风化,整合于都柳江组黄 绿色黏土层之下,与下伏老堡组整合接触,厚100~ 300 m。黎平-从江及天柱-榕江地区含矿地层为老 堡组,与灯影组为同时异相,互为楔状相变,跨寒武 系、震旦系,岩性基本以硅质岩为主,下伏陡山沱或 灯影组,上覆渣拉沟或牛蹄塘组,均呈整合接触,厚 $120 \sim 200 \text{ m}_{\odot}$

3 典型矿床地质特征

3.1 余庆构皮滩钒矿

含矿层为下寒武统牛蹄塘组一段,距牛蹄塘组 底部 4~12 m,岩性为深灰色薄层含碳黏土岩,夹少 量深灰-灰黑色碳质黏土岩。矿体上覆牛蹄塘组一 段灰-深灰色黏土岩、黑色薄层碳质黏土岩、粉砂质 黏土岩,下伏上震旦统灯影组浅灰色薄层微晶-粉晶 白云岩。矿区发育麻秧坡(V1)、虎长庆(V2)、高磅 田(V3)等 3 个矿体(图 2a)。

麻秧坡矿体为矿区主矿体(图 2c),产出形态受 金山背斜控制,呈层状,产状与地层一致,NW 翼倾 向 290°~330°,倾角 15°~25°;SE 翼倾向 78°~ 130°,倾角 15°~25°。矿体长约 4 km,厚 1.00~ 20.90 m,平均 5.43 m, $w(V_2O_5) = 0.55\%$ ~

图 1 贵州东部含钒岩系露头分布图

1.01%,平均 0.74%, $w(Mo) = 0.000 \sim 0.037\%$, $w(Ni) = 0.000 \sim 0.036\%$, 个别工程w(Mo) =0.58%、3.01%。脉石主要成分为SiO₂,次为 Al₂O₃、Fe₂O₃、CaO、MgO。矿石结构主要为砾屑结 构,具叠层、块状、脉状、鳞片状构造。

3.2 镇远江古钒矿

含矿层为下寒武统牛蹄塘组一段及老堡组中上 部,共有3层矿体。矿体上覆牛蹄塘组灰黑色碳质 黏土质页岩,下伏老堡组灰黑色硅质岩及陡山沱组 灰色泥质白云岩。矿区共发育芸上(X1)、台盘山 (X2)2个矿体(图2b)。

芸上矿体为矿区主要矿体(图 2d),受芸上向斜 控制,呈层状,矿体产状与地层一致,SE 翼倾向 80° ~160°,倾角 5°~20°;NW 翼倾向 276°~345°,倾角 4°~20°。 I 矿层产于牛蹄塘组底部的碳质泥岩及 含碳质磷结核层中,厚 0.70~5.62 m,平均 2.78 m,

图 2 构皮滩钒矿与江古钒矿地质构造简图

Fig. 2 Geological structural sketch of Goupitan V deposit and Jianggu V Deposit
a. 构皮滩钒矿;b. 江古钒矿;c. 麻秧坡矿段;d. 芸上矿段;e. 构皮滩 1 号剖面图;f. 江古 0 号剖面图;
1. 变马冲组;2. 九门冲组;3. 牛蹄塘组;4. 灯影组;5. 老堡组;6. 陡山沱组;
7. 南华系;8. 青白口系下江时期;9. 见矿钻孔;10. 含钒岩系

 $w(V_2O_5) = 0.713\% ~ 1.020\%, 平均 0.793%。$ II 矿层呈似层状、透镜状产于老堡组上部灰黑色薄层状硅质岩夹碳质泥岩中,距 I 矿层底板 5~8 m,矿体厚 0.90 ~ 3.00 m, 平均 1.91 m, $<math>w(V_2O_5)_{\mp\mu}=0.758\%$ 。III 矿层呈透镜状产于老堡 组中上部黑色薄层状硅质岩夹碳质泥岩中,距 II 矿 层底板 1~4 m,矿体厚 1.10~4.00 m,平均厚 2.00 m, $w(V_2O_5)_{\mp\mu}=0.776\%$ 。脉石主要成分 为 SiO₂,次为 Al₂O₃、CaO、MgO。矿石具显微鳞片 状、粉砂状、胶状等结构,层纹状、层状、条带状等 构造。

4 样品采集与分析方法

本次工作共采集样品 9 件。ZY-1 号样品采于

镇远江古钒矿芸上矿体(X1) I 矿层顶板页岩,ZY - 2、ZY - 3、ZY - 4 号样品分别采于 I、Ⅱ、Ⅲ钒矿层, ZY - 5 号样品采于Ⅲ矿层底板页岩;YQ - 1 号样品 采于余庆构皮滩麻秧坡矿体(V1)矿层顶板页岩, YQ - 2、YQ - 3 号样品采于钒矿层,YQ - 4 号样品 采于矿层底板页岩(图 2e—f)。样品测试工作由中 科院地球化学研究所承担,采用电感耦合等离子质 谱仪(ICP - MS)对样品进行了系统的微量元素、稀 土元素测试分析。

5 分析结果

5.1 微量元素地球化学特征

5.1.1 微量元素特征

微量元素地球化学行为受性质相近的常量元素

支配,其比值可作为各种成岩、成矿物理化学的灵敏 指示剂^[3,8]。本次样品微量元素分析测试结果见表 1。根据测试结果,按钒矿层、顶底页岩采用整个陆 壳标准值进行微量元素标准化。

图 3、图 4 显示钒矿层中 Li、Be、V、As、Mo、Ag、 Cd、Sb、Cs、Ba、W、Tl、Pb、Bi、Th、U 富集,Sc、Co、 Ni、Sr、Ga、In、Ta 亏损,其余微量元素基本持平或有 小幅变化;钒矿层顶底页岩中 Li、Be、V、Cu、As、 Rb、Mo、Ag、Cd、Sb、Cs、Ba、W、Tl、Pb、Bi、Th、U 富 集,Sc、Cr、Ni、Sr、In、Sn 亏损,其余微量元素与整个 陆壳持平或有小幅变化。钒矿层与顶底页岩的微量 元素均显示出协同变化的特征,说明其在成岩作用、 后生作用甚至表生作用中元素迁移等复杂的元素重 新分配上关系密切。

表 1 钒矿层与顶底页岩微量元素含量及其相关参数

Table 1 Content of trace elements and related parameter of V ore bed and shale of the hanging and foot walls

	ZY-1	ZY-2	ZY-3	ZY-4	ZY-5	YQ-1	YQ-2	YQ-3	YQ-4	
微量元素	顶部页岩 (江古)	矿层 (江古)	矿层 (江古)	矿层 (江古)	底部页岩 (江古)	顶部页岩 (构皮滩)	矿层 (构皮滩)	矿层 (构皮滩)	底部页岩 (构皮滩)	整个 陆壳
Li	27.32	39.51	38.86	22.12	27.52	21.47	32.39	26.37	25.26	13
Be	8.61	6.22	7.41	4.55	4.92	1.95	3.24	2.84	3.31	1.5
Sc	12.5	12.39	12.52	7.16	19.12	11.95	14.55	14.03	14.57	30
V	651	12130	11987	5321	776.6	419.4	3207	2893	1363	230
Cr	200.1	2433	3290	1374	144	64.35	249.9	143.9	100	185
Co	50.88	28.64	19.36	9.88	25.03	58.95	41.17	98.64	63.03	29
Ni	23.41	11.34	16.26	6.8	16.37	151.9	406	273.7	296.6	105
Cu	653.9	244.54	217.25	153.1	1065	56.42	126.2	72.42	54.97	75
Zn	58.32	27.9	35.05	27.63	38.59	457.6	1230	540.7	184.8	80
Ga	16.67	21.38	20.96	24.78	27.63	11.18	19.8	16.07	18.03	18
Ge	2.22	4.53	6.69	4.69	2.26	0.98	1.74	1.45	1.3	1.6
As	6.72	5.09	7.2	12.57	9.63	22.87	24.27	18.22	18.11	1
Rb	43.35	118	115.5	63.75	100.1	56.66	105.4	91.87	89.99	32
Sr	70.19	61.37	58.21	52.66	49.22	411.9	121.1	109.3	123.5	260
Zr	134.5	186	181.1	185	262.3	114.4	195.5	159	186.2	100
Nb	15.28	17.84	20.7	34.64	18.11	8.08	11.67	9.8	11.07	11
Mo	81.04	7.25	9.67	49.13	62.14	75.79	215.8	303.1	142.7	1
Ag	2.59	14.06	11.61	4.66	2.54	2.94	5.73	3.12	2.01	0.08
Cd	0.61	0.33	0.29	0.56	0.31	3.05	18.4	13.73	2.58	0.098
In	0.01	0.05	0.05	0.11	0.06	0.02	0.04	0.06	0.02	0.05
Sn	1.92	3.97	3.95	13.31	4.8	1.59	2.87	2.28	2.45	2.5
Sb	7.15	10.57	9.61	11.55	8.3	8.04	11.07	7.14	5.9	0.2
Cs	3.17	12.84	12.38	6.63	7.47	2.94	6.92	6.1	5.6	1
Ba	762.9	1492	1395	882.5	1037	10530	6828	12800	12680	250
Та	0.85	1.45	1.45	4.89	1.48	0.65	0.94	0.84	0.94	1
W	216.4	43.74	59.63	57.84	141.1	349.2	181.7	374.4	387.4	1
Tl	0.62	2.78	2.39	1.49	0.81	2.99	4.12	4.72	4.82	0.36
Pb	236.6	185	173.4	96.63	44.42	43.96	61.03	35.62	38.61	8
Bi	0.41	1.02	0.94	0.89	0.42	0.17	0.25	0.26	0.22	0.06
Th	9.63	13.23	12.83	18.17	15.71	7.54	11.99	10.2	11.2	3.5
U	13.13	132.19	142.73	74.73	57.29	41.72	96.34	48.93	50.48	0.91
w(Ba)/w(Sr)	10.87	24.31	23.96	16.76	21.07	25.56	56.38	117.11	102.67	
w(U)/w(Th)	1.36	9.99	11.12	4.11	3.65	5.53	8.04	4.80	4.51	
w(V)/w(Cr)	3.25	4.99	3.64	3.87	5.39	6.52	12.83	20.10	13.63	
w(Co)/w(Ni)	2.17	2.53	1.19	1.45	1.53	0.39	0.10	0.36	0.21	
$w(C_0)/w(Z_n)$	0.87	1.03	0.55	0.36	0.65	0.13	0.03	0.18	0.34	
w(Th)/w(U)	0.73	0.10	0.09	0.24	0.27	0.18	0.12	0.21	0.22	
w(V)/w(V+Ni)	0.97	0.99	0.99	0.99	0.98	0.73	0.89	0.91	0.82	
δU	1.61	1.94	1.94	1.85	1.83	1.89	1.92	1.87	1.86	

注:量单位: $w_{\rm B}/10^{-6}$;ZY-1至YQ-4为样品编号;测试单位为中科院地球化学研究所。

图 3 钒矿层微量元素整个陆壳标准化蛛网图

Fig. 3 The whole continental crust-normorlized spider disgram of trace element of the V ore bed

Fig. 4 The whole continental crust-normorlized spider disgram of trace element of shale of the hanging and foot walls

表 2 钒矿层及其顶底页岩矿化元素相关系数

Table 2 Mineralization elements and related parametets in V ore bed and shale of the hanging and foot walls

	Ag	Cu	Мо	Ni	Pb	Sn	U	V	Zn	$w(\Sigma \text{REE})$
Ag	1.00	-0.18	-0.49	-0.35	0.54	0.09	0.91	0.97	-0.18	0.56
Cu		1.00	-0.32	-0.51	0.22	0.01	-0.24	-0.24	-0.39	0.19
Mo			1.00	0.83	-0.56	-0.33	-0.37	-0.47	0.71	-0.62
Ni				1.00	-0.61	-0.42	-0.16	-0.38	0.86	-0.70
Pb					1.00	0.01	0.25	0.51	-0.46	0.71
Sn						1.00	0.20	0.23	-0.33	0.63
U							1.00	0.92	-0.02	0.51
V								1.00	-0.28	0.65
Zn									1.00	-0.51
$w(\Sigma \text{REE})$										1

5.1.2 矿化元素相关性

通过对 V、Ni、Mo、U 等矿化元素相关性分析, 其相关系数见表 2。从表 2 可知, Ag 与 U、V 的相 关性好,相关系数大于 0.9, Mo、Ni、Zn 间相关性较 好,相关系数大于 0.7, w(ΣREE) 与 Pb、V、Sn 的相 关性较好,相关系数大于 0.6。

5.1.3 w(U)/w(Th)、w(Ba)/w(Sr)值

Bostrom(1983)认为,w(U)/w(Th)可以指示 沉积岩的物质来源及沉积区,w(U)/w(Th) > 1即 可以反映热水作用。表 1显示,样品 $w(U)/w(Th) = 1.36 \sim 11.12$,显示热水沉积特征。黑色 页岩 $w(U)/w(Th) = 1.36 \sim 5.33$,钒矿层 $w(U)/w(Th) = 4.11 \sim 11.12$,指示钒矿层受热水作用强 于顶底页岩,与杨剑等^[8]的研究结果一致。Smith 和Cronan(1983)与Peter和scott(1988)研究认为, w(Ba)/w(Sr)的变化可以作为衡量海底热水流体 作用的尺度,海底热水沉积物中w(Ba)/w(Sr)大于 1,正常海相沉积岩中w(Ba)/w(Sr)基本小于 1,海底 热水流体作用强度与w(Ba)/w(Sr)成正相关^[9-11]。 区内钒矿层 $w(Ba)/w(Sr) = 16.76 \sim 117.11$,平均 47.71,页岩 $w(Ba)/w(Sr) = 10.87 \sim 102.67$,平均 40.04,均远大于 1,同样反映热水沉积特征,且在同矿 区中钒矿层受热水作用强于顶底页岩。

5.1.4 w(V)/w(Cr)值

w(V)/w(Cr)值可以用来判断氧化还原条件, 高w(V)多是在还原条件下形成的^[12]。一般认为, w(V)/w(Cr) < 2为氧化环境,2~2.45为缺氧环 境,>2.45为还原环境。表1显示,区内样品 $w(V)/w(Cr) = 3.25 \sim 20.10$,比值均大于2,表明 本区为还原环境。

5.1.5 δU 、w(Th)/w(U)与w(V)/w(V+Ni)值

U-Th关系式 δ U=w(U)/[(w(U)+w(Th)/ 3)/2]可以用来表示氧化还原指标^[13]。若 δ U<1, 说明为正常海水沉积环境,若 δ U>1则表明为缺氧 环境。区内样品 δ U=1.61~1.94,均大于1,表现为 缺氧沉积环境。Kimurar等(2001)的研究认为一般 情况w(Th)/w(U)值大于8.0为氧化环境,8.0~ 2.0为氧化-次氧化环境,2.0~0之间代表缺氧环 境,区内样品w(Th)/w(U)=0.09~0.73,表明本 区为缺氧沉积环境。U、V、Mo等常在缺氧环境下 富集,元素的富集状态也从侧面说明区域为缺氧环 境^[14-16]。区内样品w(V)/w(V+Ni)=0.73~ 0.99,w(V)/w(V+Ni)大于0.6为缺氧环境,0.45 ~0.60为贫氧环境,小于0.45为富氧环境^[17],指示 本区为缺氧沉积环境。

5.2 稀土元素地球化学特征

5.2.1 稀土元素特征

本次钒矿层及顶底页岩稀土元素分析结果见表

3。采用北美页岩标准值得出标准化值并计算出相 关地球化学参数见表 4。表 3显示,钒矿层中 $w(\Sigma REE) = 175.72 \times 10^{-6} \sim 539.58 \times 10^{-6}$,平均 382.11×10⁻⁶;顶底页岩中 $w(\Sigma REE) = 125.18 \times$ $10^{-6} \sim 405.72 \times 10^{-6}$,平均 245.56 × 10^{-6} , $w(LREE)/w(HREE) = 2.63 \sim 6.25$ 。图 5、图 6 显 示,稀土元素采用北美页岩标准化后的图形呈较弱 的帽状,总体曲线较平缓。LREE 相对富集,稀土元 素在钒矿层处含量最高,顶底减小,说明矿层与顶底 页岩沉积速率与稀土活度存在差异,暗示为非正常 海水沉积作用。前人研究表明[18-19],大多数下寒武 统黑色岩系中重稀土含量低于轻稀土,贵州东部黑 色岩系中钒矿层及其顶底页岩同样如此,其主要原 因可能与后期次生成矿作用等有关。镇远江古钒矿 w(ΣREE)高于余庆构皮滩钒矿,可能与其所处的沉 积环境及海水深度相关。

5.2.2 *∂*Ce值

区内样品δCe值0.21~0.72,平均0.45,显示 负异常。处于扩张洋脊(北美页岩标准化后的δCe 值为0.29)和大洋底(北美页岩标准化后δCe的平 均值为0.58)的变化范围,指示本区大致处于大洋 盆地的深海环境至大陆边缘斜坡的半深海环境之 间。Ce负异常程度与海水深度成正比^[20-22],钒矿层 δCe低于顶底页岩,指示矿层形成于相对较深的水 体深度,顶底页岩形成于相对较浅的海水深度,指示 在成岩期与成矿期之间发生了海侵和海退。

表 3 钒矿层及其顶底页岩稀土元素分析结果

Table 3	Analysis of	REE in	V	ore bed	and	shale of	of the	hanging	and	foot	walls
---------	-------------	--------	---	---------	-----	----------	--------	---------	-----	------	-------

稀土元素	ZY-1	ZY-2	ZY-3	ZY-4	ZY-5	YQ-1	YQ-2	YQ-3	YQ -4
La	78.04	103.6	106.2	70.33	57.49	25.34	46.14	33.98	34.29
Ce	110.53	97.25	96.11	94.74	94.69	45.8	83.7	58	60.5
Pr	18.12	27.14	25.62	18.3	13.47	5.758	12.56	8.128	7.923
Nd	81.64	132.6	126.18	83.74	60.35	23	54	34.9	31.5
Sm	20.07	30.97	30.43	21.6	12.67	4.75	12.08	7.76	6.34
Eu	4.79	7.05	7.21	3.75	2.63	0.952	2.564	1.404	1.065
Gd	24.57	35.86	38.07	26.16	12.5	5.68	12.73	8.53	6.21
Tb	4.02	5.66	5.79	4.36	1.87	0.787	2.031	1.322	0.958
Dy	27.04	38.47	39.35	30.42	12.12	5.2	13.2	8.9	6.1
Ho	6.05	9.07	9.12	7.1	2.76	1.125	2.886	1.939	1.343
Er	16.08	25.33	25.14	20.3	7.88	3.132	7.664	5.268	3.677
Tm	2.07	3.42	3.3	2.85	1.1	0.4477	1.029	0.7121	0.5369
Yb	11.19	20.14	19.02	17.2	6.56	2.76	5.945	4.227	3.33
Lu	1.51	3.02	2.81	2.64	0.99	0.446	0.898	0.649	0.511
Σ lree	313.19	292.46	391.75	398.61	241.3	105.6	211.044	144.172	141.618
Σ hree	92.53	111.03	142.6	140.97	45.78	19.5777	46.383	31.5471	22.6659
Σ ree	405.72	403.49	534.35	539.58	287.08	125.1777	257.427	175.7191	164.2839

注:测试单位为中科院地球化学研究所;稀土元素的量单位为 w_B/10⁻⁶。

	Table 4	e 4 Chondrite-normorlized value of REE in V ore bed and shale of the hanging and foot walls										
	ZY-1	ZY-2	ZY-3	ZY-4	ZY-5	YQ-1	YQ-2	YQ-3	YQ-4	北美页岩		
La	2.44	2.20	3.32	3.24	1.80	0.79	1.44	1.06	1.07	32		
Ce	1.51	1.30	1.32	1.33	1.30	0.63	1.15	0.79	0.83	73		
Pr	2.29	2.32	3.24	3.44	1.71	0.73	1.59	1.03	1.00	7.9		
Nd	2.47	2.54	3.82	4.02	1.83	0.70	1.64	1.06	0.95	33		
Sm	3.52	3.79	5.34	5.43	2.22	0.83	2.12	1.36	1.11	5.7		
Eu	3.86	3.02	5.81	5.69	2.12	0.77	2.07	1.13	0.86	1.24		
Gd	4.73	5.03	7.32	6.90	2.40	1.09	2.45	1.64	1.19	5.2		
Tb	4.73	5.13	6.81	6.66	2.20	0.93	2.39	1.56	1.13	0.85		
Dy	4.66	5.24	6.78	6.63	2.09	0.90	2.28	1.53	1.05	5.8		
Ho	5.82	6.83	8.77	8.72	2.65	1.08	2.78	1.86	1.29	1.04		
Er	4.73	5.97	7.39	7.45	2.32	0.92	2.25	1.55	1.08	3.4		
Tm	4.14	5.70	6.60	6.84	2.20	0.90	2.06	1.42	1.07	0.5		
Yb	3.61	5.55	6.14	6.50	2.12	0.89	1.92	1.36	1.07	3.1		
Lu	3.15	5.50	5.85	6.29	2.06	0.93	1.87	1.35	1.06	0.48		
δCe	0.37	0.30	0.21	0.22	0.56	0.66	0.50	0.53	0.72			
δEu	0.95	0.69	0.93	0.93	0.92	0.80	0.91	0.76	0.75			

表 4 钒矿层及其顶底页岩稀土元素含量的标准化值

 $\textcircled{1}: \texttt{\pm} \texttt{\pm} \texttt{D} : w_{\text{B}} / \texttt{10}^{-6}; \delta \texttt{Ce} = w(\texttt{Ce}) / w(\texttt{Ce})^* = w(\texttt{Ce})_{\text{N}} / [w(\texttt{Sm})_{\text{N}} \times w(\texttt{Gd})_{\text{N}})]; \delta \texttt{Eu} = \texttt{Eu}_{\text{N}} / [w(\texttt{Sm})_{\text{N}} \times w(\texttt{Gd})_{\text{N}})]^{1/2}$

Fig. 5 Chondrite-normorlized pattern of REE of shale in North America

5.2.3 δEu值

在正常海水中,Eu 只能以 Eu³⁺的形式存在,因 此,正常海水沉积物一般无明显的 Eu 亏损。区内 样品的 δEu 值变化于 0.69~0.95,平均 0.85,显示 弱的负异常,与谭月等^[11]、胡承伟等^[23]、白洋等^[24] 的研究结果基本一致,这可能与热液流体温度和非 强还原、强碱性的条件下络合物的不稳定有关^[25]。

6 讨论

后太古宙碎屑岩的稀土元素分布模式具有高度 的一致性,全球范围的大量测试数据表明,在正常的 细粒碎屑沉积岩中,稀土含量和分配模式非常一致, 具有轻稀土显著富集、重稀土变化平缓和 Eu 负异 常明显的共同特征。Michard A(1989)、German C R(1990)等认为,受到热水沉积作用影响的沉积物 稀土特征具有明显的 Eu 正异常、Ce 负异常,稀土元 素配分模式为近于水平或左倾。研究区样品 Ce 明 显负异常,Eu 异常不明显,稀土元素北美页岩标准 化曲线 平缓,呈较弱的帽状,w(U)/w(Th)、 w(Ba)/w(Sr)值指示热水沉积特征,δCe 值显示在 成矿期可能经历了海侵及海退^[26]。由此推断,区内 黑色页岩以正常海水沉积为主,而钒等元素的富集 受到了热液活动的影响,在热液活动影响较大时形 成富钒矿层。因此,区内钒矿层的形成是在成岩过 程中叠加的一次受热液影响的成矿活动,与海水深 度关系密切。

7 结语

(1)多种矿物的组合分布规律表明,钒多金属矿 层与顶底页岩在成岩作用、后生作用甚至表生作用 中元素迁移等复杂的元素重新分配上密切一致。

(2)微量元素和稀土元素的比值与范围结果显示,贵州东部钒矿层沉积环境为缺氧的还原环境,钒 矿层受热水作用的影响在海平面上升的情况下形成,是在正常成岩过程中叠加的一次成矿作用,与海 底热液活动和海水深度密切相关。

参考文献:

- [1] 杨瑞东,朱立军,高慧,等.贵州遵义松林寒武系底部热液喷口 及与喷口相关生物群特征[J].地质论评,2005(5):481-492.
- [2] 李胜荣,高振敏. 湘黔地区牛蹄塘组黑色岩系稀土特征——兼论 海相热水沉积岩稀土模式 [J]. 矿物学报,1995(2):225-229.
- [3] 李胜荣,肖启云,申俊峰,等.湘黔下寒武统铂族元素来源与矿 化年龄的 Re-Os 同位素制约[J].中国科学(D辑:地球科学), 2002(7):568-575.
- [4] 李任伟, 卢家烂, 张淑坤, 等. 震旦纪和早寒武世黑色页岩有机 碳同位素组成[J]. 中国科学(D辑: 地球科学), 1999(4): 351 -357.
- [5] 彭军,伊海生,夏文杰.湘黔桂地区震旦纪层状硅岩热水沉积地 球化学标志及其环境意义[J].地质学报,2000(1):95-96.
- [6] 罗泰义,张欢,李晓彪,等.遵义牛蹄塘组黑色岩系中多元素富 集层的主要矿化特征[J].矿物学报,2003(4):296-302.
- [7] 龙汉生,金中国,张伦尉,等.贵州省下寒武统黑色岩系型多金 属矿床研究进展[J].矿产与地质,2010,24(5):385-390.
- [8] 杨剑,易发成,侯兰杰.黔北黑色岩系的岩石地球化学特征和成 因[J].矿物学报,2004(3):285-289.
- [9] 盛吉虎,陈中新.硅质岩沉积地球化学研究现状[J].地域研究 与开发,1998(S1):118-122.
- [10] 施春华,胡瑞忠,王国芝.贵州织金磷矿岩元素地球化学特征 [J].矿物学报,2006(2):169-174.
- [11] 谭月,张竹如,李明琴.贵州镇远江古钒矿床地球化学特征及 成因初探[J].贵州地质,2012,29(3):188-191+196.
- [12] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129.
- [13] Wignall P B. Black Shales [M]. Oxford: Oxford University Press, 1994:6.

- [14] 李红敬, 解习农, 林正良, 等. 四川盆地广元地区大隆组有机质 富集规律[J]. 地质科技情报, 2009, 28(2): 98-103.
- [15] Algeo T J.Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions [J]. Paleoceanography, 2006, 21 (1): n/a-n/a. DOI: 10. 1029/ 2004pa001112.
- [16] 付勇,周文喜,王华建,等.黔北下寒武统黑色岩系的沉积环境 与地球化学响应[J].地质学报,2021,95(2):536-548.
- [17] Hatch J R.Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the upper pennsylvanian (missourian) stark shale member of the dennis limestone, wabaunsee county, kansas, usa. [J]. Chemical Geology, 1992, 99(1-3):65-82.
- [18] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and ree study of cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2):29-48.
- [19] 游先军,戴塔根,息朝庄,等.湘西北下寒武统黑色岩系地球化 学特征[J].大地构造与成矿学,2009,33(2):304-312.
- [20] 杨兴莲,朱茂炎,赵元龙,等.黔东前寒武纪-寒武纪转换时期 微量元素地球化学特征研究[J].地质学报,2007(10):1391-1397.
- [21] 冯洪真,Bernd-D Erdtmann,王海峰.上扬子区早古生代全岩 Ce 异常与海平面长缓变化[J].中国科学(D辑:地球科学), 2000(1):66-72.
- [22] Wilde P, Quinby-Hunt M S, Erdtmann B D. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies [J]. Sedimentary Geology, 1996, 101(1-2):43-53.
- [23] 胡承伟,龚仁会.贵州镇远江古钒矿矿床稀土元素地球化学特征[J].中国西部科技,2011,10(13):7-9.
- [24] 白洋,谢宏,王孟斋,等.贵州铜仁坝黄牛蹄塘组黑色岩系有机 质富集机理[J].地质科技通报,2023,42(5):115-127.
- [25] 侯东壮,吴湘滨,刘江龙,等.黔东南州下寒武统黑色页岩稀土 元素地球化学特征 [J].中国有色金属学报,2012,22(2):546 -552.
- [26] 卢正浩,谢宏,白洋,等.黑色岩系稀土元素地球化学特征及地 质意义[J].稀土,2024(1):63-75.

Geochemical characteristics and significance of V deposits in black rock series in east Guizhou province XIAN shaojun¹, LUO junfeng¹, LIU ling², PU qinglong¹

(1. Institute of Geology and mineral Resources Exploration, Non-ferrous Metals and Nuclear Industry Geological Exploration Bureau of Guizhou Province, Guiyang 550005, Guizhou Province, China;
2. Non-ferrous Metals and Nuclear Industry Geological Exploration Bureau of Guizhou province, Guiyang 550005, Guizhou Province, China)

Abstract: This paper deals with sedimentary environment and ore-forming process of V deposits in black rock series in east Guizhou province. Samples are collected systematically from shale of hanging wall and foot wall of V ore layers and analyzed REE and trace elements with inductively coupled plasma mass spectrometry. The result shows that the V-polymettal-bearing beds are deposited under anxic reducing enbironment and V ore bed is formed during rising of sea level under influence of hot water. The V mineralization is over printed on normal diagnenesis and is closely related to sub-marine hydrothermal activity and depth of the sea water. V ore bed is very similar to the shale of hanging and foot walls in respect of element migration and redistribution etc. during diagenesis, epegenesis and even supergenesis.

Key Words: Black rock series; V-ore bed; trace element; REE; geological characteristics; Guizhou province