doi:10.6053/j.issn.1001 - 1412.2014.02.020

山东牟平邓格庄金矿 Ⅱ号脉盲矿体 预测地球化学标志

任曙光¹,李 惠²,刘春岚¹,吕明光¹, 李德亮²,管安民¹,赵佳祥²,魏 江² (1.烟台市牟金矿业有限公司,山东烟台 264109; 2.中国冶金地质总局地球物理勘查院,河北 保定 071051)

摘要: 文章总结了邓格庄金矿床Ⅱ号脉元素组合及不同成矿阶段元素含量特征,研究了金矿体 的原生晕、石英包裹体气晕-离子晕的轴向分带及其叠加特点,确定了盲矿体预测的原生叠加晕及 石英包裹体气晕-离子晕地球化学标志;对深部进行的盲矿体预测取得了较好的效果。 关键词: 金矿床;盲矿体;地球化学标志;原生叠加晕;包裹体气晕-离子晕;山东省 中图分类号: P595;P618.51 文献标识码: A

0 引言

邓格庄金矿为山东省牟平一乳山金矿带的一个 大型石英脉型金矿。金矿成矿严格受构造控制,具 有多阶段叠加成矿成晕特点。研究金矿体(晕)的轴 (垂)向分带及不同期次形成矿体(晕)在空间上的叠 加结构,是判别矿体剥蚀程度和确定盲矿预测标志 的关键^[1]。本文通过研究邓格庄 II 号脉金矿体原生 晕和石英的包裹体气晕-离子晕的轴向分带及叠带 特点,并对邓格庄金矿 II 号脉深部盲矿体作出预测。

1 矿床地质特征

(1)与成矿有关构造、岩浆岩。牟乳金矿带的金 矿床(点)严格受区内六大 NE 向断裂及其次级构造 控制;邓格庄金矿受金牛山断裂带中段的次级 NNE 向断裂控制,区内 NNE 向断裂与 NNW 向、NW 向 断裂交汇处有利金矿化富集;矿床的直接围岩为昆 嵛山花岗岩。区内脉岩发育,有煌斑岩、闪长岩脉、 闪长玢岩脉等。

(2)矿脉特征。邓格庄金矿区内有多条矿脉,以
I号、II号脉为主。 II号脉为主矿脉,长1200m,厚
0.8~3.0m,走向10°~12°,倾向NW,倾角60°~
85°,金矿体为盲矿; I号脉长2100m,走向10°~25°,倾向NW,倾角40°~85°。蚀变带宽20~40m,
其中夹有黄铁矿石英脉。

(3)围岩蚀变。黄铁矿化、绢云母化、绿泥石化 和钾长化,其中黄铁矿化、硅化与成矿关系最密切。 从矿脉→远离矿脉,蚀变依次是黄铁绢英岩→绢云 石英岩→钾长花岗岩(钾化带)→花岗岩。

(4)矿石矿物组成。金属矿物以黄铁矿为主,其 次有磁黄铁矿、黄铜矿、方铅矿等。金矿物主要有银 金矿、金银矿、自然金等,多以包裹金、裂隙金和晶隙 金存在。非金属矿物主要为石英,其次为绢云母、方 解石、绿泥石等。

(5)成矿阶段。可分为黄铁矿-石英阶段(Ⅰ)、 石英-黄铁矿阶段(Ⅱ)、石英-多金属硫化物阶段 (Ⅲ)、石英-碳酸盐阶段(Ⅳ)4个阶段。黄铁矿-石 英阶段是区内矿化先导,在构造断裂带中形成较大

收稿日期: 2013-09-05; **责任编辑:** 王传泰

作者简介: 任曙光(1966-),男,高级工程师,1991年毕业于沈阳黄金学院,长期从事矿山地质及找矿工作。通信地址:山东烟台市牟平 区水道镇,烟台市牟金矿业有限公司;邮政编码:264109;E-mail:renshuguang003@163.com

规模的石英脉,同时有少量的黄铁矿形成,黄铁矿多 为粗粒、自形,呈团块状分布;此时的金矿化弱,w (Au)≪1×10⁻⁶。石英-黄铁矿阶段以石英黄铁矿 产出为主,主要由灰白色-烟灰色石英和中细粒黄铁 矿组成;这一阶段的黄铁矿含金高,是主要成矿阶段 之一。石英-多金属硫化物阶段主要矿物有黄铁矿、 黄铜矿、方铅矿、闪锌矿、毒砂等,多呈细脉状穿插、 局部叠加于前阶段矿脉上,也是主要成矿阶段之一。 石英-碳酸盐阶段多呈细脉状充填于晚期构造裂隙 中,金矿化极弱。第Ⅱ,Ⅲ阶段为主成矿阶段,Ⅰ,Ⅳ 阶段为弱矿化阶段,第Ⅱ,Ⅲ阶段同位叠加形成富矿 体。

2 矿床地球化学特征

(1)矿床元素组合为 Au, Ag, Cu, Pb, Zn, As,

Sb, Bi, Mo.

(2)主要蚀变岩石化学成分如表 1 所述。其特 点是从未蚀变的黑云母花岗岩→钾化花岗岩→绢云 石英岩,随着蚀变程度增加,K₂O,CO₂,H₂O及 CaO 带入量显著增加,而 Al₂O₃,FeO,Na₂O,TiO₂ 带出 量总体上有增加趋势;MgO,Fe₂O₃,SiO₂,MnO 在 钾化带带出,而在绢云母化带带入。

(3)不同成矿阶段元素含量特征如表2所述。 各成矿阶段元素含量都高于矿区背景值和矿床异常 下限;第Ⅱ阶段以Au,Ag,As,Sb,Cu,Pb,Zn含量 高为特点;第Ⅲ阶段以Zn,Bi最高,其他仅次于第Ⅱ 阶段而远高于第Ⅰ阶段。以表2中各元素衬值: Au,Ag≥30;As≥300;Sb、Bi≥10;Cu≥10;Pb、Zn ≥1为标准,则各成矿阶段元素组合是:I阶段Au, Ag,Zn;Ⅲ阶段Au,Ag,As,Sb,Cu,Pb,Zn;Ⅲ阶段 Au,Ag,As,Sb,Bi,Cu,Pb,Zn。

表 1 邓格庄金矿 Ⅱ号脉 65 m 中段围岩及蚀变带岩石化学全分析结果

Table 1 Bulk analysis of wall rocks and rocks in the alteration zone at level 65m of ore body II

岩性	SiO_2	Al_2O_3	${\rm TiO}_2$	CaO	MgO	Fe_2O_3	FeO	K_2O	Na_2O	P_2O_5	MnO	$\rm H_2O$	$\rm CO_2$
黑云母花岗岩(原岩)	70.18	15.53	0.26	2.31	0.28	1.20	1.34	3.94	4.22	0.08	0.058	0.31	0.30
钾长花岗岩(钾化带)	69.48	15.18	0.21	2.44	0.23	0.58	1.16	4.83	2.98	0.07	0.050	0.74	2.05
绢云石英岩(绢云母化带)	72.33	14.33	0.17	2.69	0.60	1.21	0.83	5.85	1.85	0.07	0.073	1.26	2.60

量的单位:wB/%;资料来源:文献[2]。

Table 2 Trace element contents of ore from ore body II										
矿石类型	成矿阶段	特征值	Au	Ag	As	Sb	Bi	Cu	Pb	Zn
含金中粗粒黄铁矿	Ι	日何	2.21	2.30	125	0.83	3.18	70	30	150
含金细粒黄铁矿	П	力時	44.9	15.5	5391	20.9	3.9	5000	80	170
含金多金属硫化物	Ш	均但	8.6	3.03	249	14.3	6.1	212	28	173
含金中粗粒黄铁矿	Ι	衬值	73	32.9	156	1.6	6.3	3.2	0.17	3.1
含金细粒黄铁矿	П		1416	221	6238	41.8	7.8	227	4.7	3.0
含金多金属硫化物	Ш		286	43	311	28.6	12.2	9.6	1.6	3.6
矿床异常下限			0.04	0.1	5	0.8	0.8	30	30	80
矿区背景(岩体)			0.03	0.07	0.8	0.5	0.5	22	17	48

表 2 邓格庄金矿 2 号脉矿石微量元素含量

量的单位:wB/10⁻⁶;衬值=几何均值/矿区背景(岩体)。

表 3 邓格庄金矿体不同标高地球化学参数垂直变化规律

Table 3 Vertical variation regularity of geochemical parameter at different elevations for ore bodies in Denggezhuang Au mine

矿体相对位置	标高/m	Au	Ag	Sb	As	Bi	Mo	Cu	Pb	Zn	Sb/Bi	Bi • Mo/Sb
前缘	130	0.166	4.5	6.9	52.9	1.6	4.5	47	78.5	70	4.3	1.04
	55	3.06	3.45	9.0	321	1.56	35.0	366	195	144	5.76	6.07
头	15	11.69	6.85	10.5	961	6.35	43.9	1273	142	250	1.65	26.5
	-25	16.85	1.76	13.4	1285	3.62	62.1	635	14.3	280	3.7	16.8
中	-65	5.65	10.26	16.8	671	2.62	57.7	659	112	120	6.41	9.0

量的单位: $w_B/10^{-6}$ 。

3 矿体(晕)地球化学参数轴向变化特征

邓格庄金矿床 [] 号脉地表石英脉露头宽 0.5~ 1.0 m,石英为黄褐色-烟灰色,硫化物少见,含金性 不十分明显,Au的质量分数为 0.0 *n*×10⁻⁶;向深部 到 50~100 m时,石英脉宽度变到 1~2 m,含有大 量的黄铁矿,可构成为金矿体。

(1)以 22 线为例,上中部位(标高 130—-65
m)矿体(晕)的地球化学参数轴向变化规律如表 3
所述。从标高 130 m→55 m→15 m→-25 m→-65
m,Au 含量先升高后降低;As 则呈现总体升高趋

势;Sb 也是不断升高;Sb/Bi 由升到降 然后又升高;Bi•Mo/Sb 由升到降。在 -65 m 处的 As 和 Sb 升高,反映有另一 次成矿叠加;指示矿体在-65m 只是中 上部,矿体向深部延伸还有可能。

(2)原生晕垂直分带序列:从矿体前 缘到下部,元素分带为Pb→Cu→Bi→Zn →Mo→As→Au→Ag→Sb。与李惠等 总结出的中国金矿床的原生晕综合轴向 (垂直)分带序列B-I-As-Hg-F-Sb-Ba(矿 体前缘及上部)→Pb-Ag-Au-Zn-Cu(矿 体中部)→W-Bi-Mo-Mn-Ni-Cd-Co-V-Ti (矿体下部及尾晕)^[3]相比,邓格庄矿体 原生晕从前缘到下部轴向分带序列中 As和Sb偏下,反映了另一次成矿前缘 晕叠加,指示矿体存在向深部延伸的可 能性。

(3) 石英包裹体的气相成分 CH₄, CO, \overline{D}_{H_2O} , \overline{D}_{CO_2} ,以及液相中 Cl⁻,F⁻的 轴(垂)向变化,从上向下降低;从矿体前 缘到下部为 Cl⁻→Na⁺→F⁻→CH₄→ \overline{D}_{H_2O} , \overline{D}_{CO_2} →CO。

4 金矿体原生叠加晕、包裹 体气晕-离子晕特征

4.1 金矿体原生叠加晕特征

金矿成矿成晕具有多阶段叠加的特

点,即所圈定金矿体(晕)是多阶段叠加的结果。

邓格庄金矿床矿体周围形成异常的元素为Au, Ag,As,Sb,Zn,Cu,Pb,Mo,Bi等(图1)。地表矿体 前缘中出现了Au(外带),Ag-Sb(内带),As-Cu-Pb-Zn中带,Mo外带异常,Bi无异常;向深部,Au-Cu-As-Sb为内带异常,Bi-Mo也为内带异常。元素As-Sb,从地表到深部,异常都很强;深部的As-Sb与 Bi-Mo强异常共存,反映有另一次成矿前缘晕叠加。

4.2 金矿体包裹体气晕-离子晕特征

金矿体矿物中的流体包裹体保留了成矿热液的 大量信息(包裹体中不但有固相——子矿物,而且包 含着液相和气相),研究不同成矿期次包裹体中液相 和气相成分,可反映成矿热液成分、性质;研究矿体 不同标高包裹体的地球化学垂直变化(包裹体气晕、

离子晕垂直分带)规律,即矿体前缘、矿头、矿中、矿 尾的包裹体气晕-离子晕组合特征,可得出寻找盲矿 和判别矿体剥蚀程度的气晕-离子晕标志。

本次对邓格庄金矿床 II 脉 4 个中段进行了含金 石英脉标本及石英单矿物采集、研究。首先分选出 纯石英单矿物,样品送中国有色总公司北京矿产地 质研究院进行分析测试。采用气相色谱分析石英包 裹体中气相成分: H_2O , CO_2 , CH_4 , N_2 , H_2 ,CO;用红 外光谱测定石英光片中包裹体中 H_2O 和 CO_2 的相 对光密度平均值(\overline{D}_{H_2O} , \overline{D}_{CO_2});用离子色谱分析石英 包裹体内液相成分中的 F^- , Cl^- , SO_4^{2-} , Mg^{2+} , Ca^{2+} , K^+ , Na^+ 离子含量。

邓格庄 II 号含金石英脉的石英包裹体气晕-离 子晕垂直纵投影如图 2 所示。在气相成分中 CH₄, CO, \overline{D}_{H_2O} , \overline{D}_{CO_2} 以及液相中的 Cl⁻,F⁻,Na⁺等离子, 在矿脉中上部前缘形成了明显异常。其中,Cl⁻和 Na⁺离子晕仅在地表矿体前缘出现异常, $\overline{D}_{H_2O}/\overline{D}_{CO_2}$ 和 F⁻离子晕也在地表矿体前缘出现强异常,它们是 盲矿体前缘晕特征指示的离子晕,也是预测深部盲 矿的重要标志。

5 金盲矿体预测地球化学标志及效果

5.1 叠加晕元素指示标志

(1)最佳指示元素组合:Au,Ag,As,Sb,Zn,Cu,Pb,Mo,Bi。

(2)指示元素的指示意义: Au 是成矿元素,其 异常出现指示有金矿化; As, Sb 是前缘晕特征指示 元素; Zn, Cu, Pb 是重要伴生元素, 是多金属硫化物 阶段的标志元素, 其强异常出现指示多金属硫化物 阶段成矿叠加,可能形成富金矿体,即近矿指示元 素;Mo,Bi是伴生元素,其强异常出现在矿体尾部, 即尾晕指示元素。

5.2 金盲矿体预测地球化学标志

(1)在有 Au 异常条件下, As, Sb 前缘晕特征指 示元素出现异常, 而尾晕元素 Mo, Bi 无或弱异常, 指示矿体向下延伸还很大或深部有盲矿体。

(2)在矿体尾部出现前、尾晕共存指示深部有盲 矿体。

(3)计算原生晕轴向分带序列结果,与中国金矿 原生晕轴向分带序列相比,出现反常或反分带的其 指示深部有盲矿体。

(4)从上到下,地球化学参数异常由高到低,且 最深部又升高,指示矿体延伸还很大或深部有盲矿 体。

(5)地球化学参数预测指标:Bi • Mo/Sb≤2,
 Sb/Bi≥5,Ag≥4,As≥50,Sb≥7,指示金矿体前缘,
 即深部有盲矿体。

(6)包裹体气晕-离子晕标志:含金石英脉石英 包裹体的 CH_4 , \overline{D}_{H_2O} , \overline{D}_{CO_2} , Cl^- , F^- , Na^+ 等离子异 常在矿体中出现异常,指示矿体延伸还很大;在已知 矿体尾部出现,指示深部有盲矿体。

5.3 预测及效果

根据金盲矿体预测地球化学标志,对邓格庄金 矿Ⅱ号矿脉深部进行了金盲矿体预测。认为Ⅱ号矿 脉 22 线位置金矿体在-65 m 处为矿体中部,向下 还有很大延伸。深部探矿结果己证实:矿体向深部 已延伸到-400 m,证实了预测标志的准确性。

6 结语

邓格庄金矿 Ⅱ号矿脉成矿成晕具有多阶段叠加 特点,研究矿体原生叠加晕和包裹体气晕-离子晕特 点,确定盲矿预测标志,可有效对深部进行预测。

参考文献:

- [1] 李惠.石英脉和蚀变岩型金矿床地球化学异常模式[M].北 京:科学出版社,1991:18-39.
- [2] 李惠,张文华,常凤池,等.大型、特大型金矿盲矿预测的原 生叠加晕模型[M].北京:冶金工业出版社,1998:48-53.
- [3] 李惠,张国义,禹斌.金矿区深部盲矿预测的构造叠加晕模型 及找矿效果[M].北京:地质出版社,2006:37.

Geochemical marks of ore body II-based blind ore prediction in Dengezhuang gold mine of Muping, Shandong province

REN Shuguang¹, LI Hui^{1,2}, LIU Chunlan¹, LV Mingguang¹, LI Deliang², GUAN Anmin¹, ZHAO Jiaxiang², WEI Jiang²

(1. Muping gold mine limited, Yantai 264109, Shandong, China;2. Geophysical exploration Institute of CEEB, Baoding 071051, Hebei, China)

Abstract: The paper summarizes characteristic element associations and element contents of different ore-forming stages of ore body II dealing with characteristics of axial zoning and overprinting of primary halo, gas halo-ion halo of fluid inclusion in quartz of the ore body. Geochemical marks of the primary superimposed halo and the gas halo-ion halo for blind ore prediction are determined and the ore prospecting check to depth is with good result.

Key Words: Au deposit; blind ore body; geochemical mark; primary superimposed halo; gas halo and ion halo of inclusion; Shandong province