Contributions to Geology and Mineral Resources Research

 $doi: 10.6053/j.\,issn.\,1001-1412.2014.02.004$

哀牢山南段长安金矿深部找矿新进展

周云满1,张家良2,董文伟1,普家忠1

(1. 云南黄金矿业集团股份有限公司,昆明 650224;2. 云南省国土资源厅,昆明 650224)

摘要: 长安金矿床是"十五"期间云南省重大找矿突破之一。文章介绍了长安金矿床成矿地质背景、矿床地质特征、矿床类型、控矿因素等方面的新认识,提出了矿床主矿体并非受控于中上志留统与下奥陶统之间的加里东期不整合面,而是受控于 NNW 向陡立的 F。断裂破碎带,属于构造破碎蚀变岩型金矿";通过采用 TEM+IP 物探方法圈定深部低阻、高充电率异常带,并结合成矿地质因素确定深部找矿空间,深部找矿工作获得新突破,扩大了资源/储量。

关键词: 长安金矿;断裂破碎带控矿;TEM+IP物探方法;深部找矿;哀牢山南段;云南省 中图分类号: P618.51:P613.32 文献标识码: A

0 引言

云南长安金矿床是由云南省地质调查院第二地 质矿产调查所于 2001 年进行金铜矿资源调查时发 现、云南地矿资源股份有限公司文山分公司于 2001-2002年进行勘查,在哀牢山金矿带南段查明 的第一个大型金矿床[1]。2003年以来云南黄金矿 业集团股份有限公司对矿床进行开发,2009年后持 续开展了矿床成矿规律及成矿预测研究,以及深边 部的找矿工作。应汉龙等[2]、王勇等[3]对长安金矿 床基本地质特征进行过阐述,并利用不同地质体的 硫、铅同位素特征探讨了金成矿与不同地质体的相 互关系和成矿物质来源信息;和中华等[4]研究了长 安金矿床矿石、地层、岩浆岩成矿元素的含量,初步 探讨了长安金矿床成矿物质的来源;郭春影等^[5]对 矿床不同地质体稀土元素组成特征进行过研究,探 讨了稀土元素对长安金矿床金成矿作用的指示意 义:张静等[6]、田广等[7]对矿床岩浆岩的岩石学特 征、岩体年龄及其与成矿关系进行了探讨。

本文将总结长安金矿床深边部找矿的认识过程

及取得的新勘查成果,以期对金矿勘查找矿工作有 所裨益。

1 成矿地质背景

(1)大地构造背景。长安金矿区地处扬子古陆 块与印支陆块的结合部位,即扬子古陆块的陆缘增 生带^[8],扬子-华南陆块区之上扬子古陆块西南缘的 金平陆缘褶-断带^[9](以往曾称"金平断块或金平滑 移体"^[10]、"金平'稳定'陆缘块体"^[11])上。成矿区带 划分属于哀牢山金成矿带南段之金平一绿春金成矿 亚带^[12]。

(2)地层。区内出露地层为奥陶系一中三叠统 滨海、浅海陆棚砂-泥质岩、碳酸盐岩台地沉积。中 上志留统与下奥陶统之间具有加里东运动造成的平 行不整合记录,印支运动使全区隆起;喜马拉雅造山 运动后在山间盆地中堆积了新近纪的含煤建造。

(3)构造。区内构造线以 NW 向为主,其次为 近 SN 向和 NE 向;甘河断裂、金平断裂是区内重要 的控岩控矿构造。长安金矿处于甘河断裂(F₁)与三 家河断裂(F₂)夹持的三角形断块的中南缘(图 1),

收稿日期: 2013-05-02; 责任编辑: 王传泰

基金项目: 国土资源部公益性行业专项"我国典型金属矿科学基地研究"(编号:200911007)和云南黄金矿业集团股份有限公司科研项目 "滇西地区金多金属矿成矿规律及成矿系列研究"(编号:E1107)联合资助。

作者简介: 周云满(1965-),男,正高级工程师,博士,2008 年毕业于中国地质大学(北京),长期从事地质矿产勘查、矿床地质及找矿预测研究工作。通信地址:云南黄金矿业集团股份有限公司;邮政编码:650224; E-mail:1965yunman@sina.com

矿区总体构造格局为由 F₇ 和 F₈ 构成的逆冲推覆构造系统。

(4)岩浆岩。区内岩浆活动强烈,重要的有海西 期基性-超基性岩浆喷发-侵入活动,印支期中-酸性 岩浆侵入活动,以及喜马拉雅期碱性基性-酸性岩 浆侵入活动。

(5)地球物理背景。区域1:100万布格重力异 常图反映,区内的重力场值由北东部向南西逐渐降低(场值-120×10⁻⁵~-160×10⁻⁵m/s²);呈 NW 走向的正、负异常相间出现。铜厂一元阳一红河一 带为 NW 向的重力高隆起带,南科一绿春一老王寨 一线为重力低拗陷带,两者平行排列,沿藤条江断裂 带转换。正重力异常反映为构造隆起区(金平—铜 厂—营盘街一带为以下奥陶统为核心的背斜),以及 基底受二叠纪晚期基性-超基性岩浆上侵隆起影响 导致地壳变薄部位。区内已知的铜镍矿床(点)均产 于正重力异常带或正、负重力异常的过渡带附近,金 矿床均产于正重力异常带中。机载电磁测量 (HEM)结果表明,区内存在3个磁异常及电性异常 带,其中,铜厂毛贝湾一白虎山 NW 向电性异常带 (无明显磁异常)可能为小规模岩体和大规模含硫化 物断裂破碎蚀变带引起^[8]。

(6)地球化学背景。1:20万水系沉积物测量 显示,长安金矿区位于金平一大坪异常集中区中 部^[13]。异常呈 NW 向展布,长 30 km,宽 10~15 km,面积 375 km²,金、银、铅、锌、铜、钨出现异常; 它们与区内强烈的基性-中酸性岩浆活动有关,形成 以金为主元素的规模大、强度高、浓集中心明显、分 带清晰的 Au-Ag-Pb-Zn-Cu-W-Bi 多元素异常组合。 其中,多数异常与已知矿床(点)对应。

区域成矿地质条件较好,形成了与沉积建造、构造-岩浆-流体活动相对应的铜、镍、钼、金、银、铅、

图 1 长安金矿区地质矿产简图

Fig. 1 Simplified geological and ore occurrences map in surrounding of Chang'an gold deposit
1. 第四系; 2. 古近系勐腊组砂砾岩; 3. 三叠系中统上兰组板岩夹砂岩; 4. 二叠系下统阳新组灰岩; 5. 石炭系尖山青组灰岩、生物灰岩;
6. 泥盆系上统干沟组灰岩、砾屑灰岩; 7. 泥盆系中统生物灰岩、板岩; 8. 泥盆系下统青山组灰岩、白云岩; 9. 志留系中上统康郎组白云岩;
10. 奧陶系下统向阳组二段长石砂岩; 11. 奧陶系下统向阳组一段石砂泥岩夹砾岩; 12. 奧陶系下统海东组砂岩、泥岩; 13. 辉长岩; 14. 辉绿岩; 15. 正长岩; 16. 正长斑岩; 17. 闪长岩; 18. 断层及编号; 19. 整合地层界线; 20. 假整合地层界线; 21. 不整合地层界线; 22. 矿化蚀变 带及编号; 23. 地层产状; 24. 金矿床; 25. 铜钼矿床; 26. 长安金矿; F₁. 甘河断裂, F₂. 三家河断裂

锌、铂族元素等重要的矿产资源。其中,与基性-超 基性岩有关的铜、镍、铂族元素矿床、与中-酸性侵入 岩有关的金、银、铅、锌矿床、与碱性基性-中酸性侵 入岩有关的铅、钼、金矿床、与构造破碎带蚀变岩有 关的金矿床是本区重要的矿床类型。

2 矿床地质特征

2.1 地层特征

长安金矿区出露地层为下奥陶统碎屑岩和中上 志留统碳酸盐岩。下奥陶统仅出露向阳组(O₁x), 自下而上划分为两段:第一段(O₁x¹)以长石石英粉 砂岩、细砂岩、粉砂岩为主,夹含砾长石石英粗砂岩、 砾岩,厚1052 m;第二段(O₁x²)主要为薄层-厚层状 泥质板岩、粉砂质板岩,夹浅灰色透镜状变质粉砂 岩、细砂岩,厚376 m。中上志留统康郎组(S₂₋₃k)主 要为厚层状灰质白云岩、砂屑白云岩,夹薄层状白云 质灰岩,厚961.19 m。

2.2 构造特征

矿区构造主要为褶皱和断裂。长安金矿床产出 在近 EW 向弧形断裂(F₇,F₈)与 NW 向区域断裂 (F₁)交汇部位。F₇ 具有"层间断层"的特点,受 F₇ 逆断层影响,区内下奥陶统(O₁x)逆冲于中上志留 统(S₂₋₃k)之上。

矿区内断裂构造除 F_7 外,主要有 NNW 向 F_6 (破碎带),次为近 EW 向的 F_{10} 和 F_{11} 断裂(图 2)。 F_6 属于容矿断裂, F_{10} 和 F_{11} 属于破矿断裂。 F_6 发育 于近 EW 向弧形断裂(F_7)转折端,近直立略向 E-NE 倾斜,走向长>1 800 m,破碎带宽 30~150 m, 而且明显地可分为东构造岩带、西构造岩带。东带 为向阳组粉砂岩的碎裂岩,发育相对完整的粉砂岩、 砾岩、白云岩透镜体,带宽 40~110 m,具有黄铁矿 化、毒砂化、硅化,是金矿化主要产出部位;西带为康 庄组白云岩的构造角砾岩,带宽 10~50 m,具碳酸 盐化,金矿化弱。破碎带内还穿插有许多辉绿岩脉、 煌斑岩脉及正长斑岩、细晶正长岩脉等。破碎带内 NE 向裂隙和层间滑动破裂隙较为发育,次有 NW 向和 SN 向的裂隙,反映了 F_6 具有多期性的活动特 点。

2.3 岩浆岩特征

矿区及周边地区岩浆岩(脉)发育。正长斑岩、 细晶正长岩等呈岩株、岩枝、岩席产出。辉绿岩和辉 长岩脉体边缘多数见有金矿化现象(与灰岩接触带

的风化土壤内常聚集成残积型金矿);煌斑岩、基性 煌斑岩、碱性煌斑岩、云煌岩等呈脉体分布于断裂破 碎带及裂隙中,多数煌斑岩脉体边缘与围岩接触带 发育金矿化(风化部位常集成残积型金矿)。

2.4 矿体特征

金矿体主要受 NNW 向的 F₆ 压扭性-张扭性断裂及其在下奥陶统向阳组中形成的脆性破碎带的控制。赋矿岩石主要为下奥陶统向阳组碳质泥岩、破碎的粉砂岩、石英细砂岩、石英砾岩等,以及喜山期的辉绿岩与煌斑岩。目前共圈定金矿体 6 个,分布于 F₁₀—F₁₁之间;矿体形态为似层状、大透镜状,有分支复合。主矿体 V₅ 就位于断层破碎带(F₆)东带中; V₅₋₁矿体为次要矿体,V₅a,V₅b,V₅e,V₅d 等为次支矿体。V₅ 矿体长 500 m,倾斜延深 100~600 m,总体走向约 340°,倾向 60°~75°,局部出现反倾

现象(倾向 SW),倾角 20°~90°,厚度 0.86 ~60.34 m,平均17.79 m,矿石品位w(Au)=1.37×10⁻⁶~ 8.01×10⁻⁶,平均 4.76×10⁻⁶; V₅₋₁矿体与 V₅ 矿体 平行,长 500 m,延深 477 m;总体倾向 70°,局部反 倾,倾角 25°~85°,上缓下陡,厚 1.36~25.83 m,平 均 9.34 m, 矿石品位 $w(Au) = 2.14 \times 10^{-6} \sim 13.81$ $\times 10^{-6}$,平均 5.76 $\times 10^{-6}$ 。矿石金属矿物为黄铁 矿、毒砂、雄黄、褐铁矿、赤铁矿,极少量方铅矿、闪锌 矿、黄铜矿、辉锑矿、铜蓝、金银矿物等;脉石矿物为 石英、长石、绢云母、黏土矿物、白云母、白云石、方解 石,少量黝帘石、氟石、葡萄石等。金主要呈微细粒 金赋存于黏土矿物以及石英、黄铁矿、毒砂的内裂隙 和胶结物的碎屑间[14]。边部的 V_3 , V_6 矿体就位于 灰岩中的层间破碎带,含矿岩石为断层泥、碎裂白云 岩。V1, V2, V4 矿体赋存于岩床状辉绿岩的纵向裂 隙中,矿体与围岩呈渐变过渡关系,部分呈突变关 系。

2.5 围岩蚀变特征

围岩蚀变主要有碳酸盐化、硅化、绢云母化、石 英细脉化、黄铁矿化、毒砂化、金矿化,局部尚有黄铜 矿化、方铅矿化、闪锌矿化等。碳酸盐化主要为白云 石化,次为方解石化,呈不规则网脉状产出于破碎裂 隙带中。硅化表现为石英细脉化分布于矿化破碎带 内,常与白云石细脉伴生。黄铁矿化和毒砂化为主 要的矿化蚀变,广泛分布于破碎带内,并与岩石的破 碎程度密切相关。总体上,硅化、碳酸盐化、石英细 脉化和黄铁矿化、毒砂化与金矿化密切相关。

3 深部找矿突破

3.1 对长安金矿床的新认识

通过对长安金矿床浅部矿体开采所揭露地质现 象的研究,结合以往勘查成果,综合研究了断裂构造 对金矿化富集规律的控制作用^[15-16,18-19]以及岩浆活 动对金矿化富集的叠加作用^[7,17],对矿床地质特征 得出以下新认识。

(1)矿区向阳组地层没有发生倒转,地层层序正 常。以往工作中将含矿带顶板划分为向阳组二段, 现根据该套地层夹多层砾岩及产状,以及区域对比 分析,本次将含矿顶板地层划分为向阳组一段;原划 分的下部向阳组一段应为向阳组二段。

(2)向阳组与"下伏"康郎组之间为断层接触 (F₇),而非不整合接触关系,并且认为属一推覆构造 系统(另文发表),二者之间形成了一套构造角砾岩--碎裂岩组成的蚀变岩,构成金矿化的初始富集。以 往认为本区属于勐谢倒转背斜的南东翼倾伏端^[20], 本次研究认为是逆冲推覆构造形成的地层倒置,而 非褶皱构造引起的地层倒转。

(3)矿区 F。断层为高角度压扭性-张扭性断裂, 向北被 F₁₀所截,向南被岩体侵入破坏,走向上延伸 1 800 m,破碎带宽 30~150 m;破碎带内构造岩分 带明显,西侧为灰岩角砾岩,东侧为蚀变砂泥岩的角 砾岩-碎裂岩。F。破碎带东带蚀变碎裂岩是金矿体 赋存的部位。

(4)主矿体并非沿向阳组与"下伏"康郎组之间 界面产出,而是受 NNW 向的 F。破碎带控制,沿断 裂带近直立产出,产状与断裂一致,向深部有较大的 延深。

(5)沿断裂带有正长斑岩、细晶正长岩、煌斑岩脉侵入,对矿体有破坏作用,同时对周边矿化也产生叠加作用。

(6)矿床类型为构造破碎带蚀变岩型金矿床(造山型金矿)^[21-23]。

(7)矿床主要找矿方向不是沿向阳组与康郎组 之间的不整合面或破碎带,而是沿 F。破碎带走向或 深部。

3.2 物探技术应用与找矿方向认知

根据对长安金矿床地质特征新认识,含矿破碎 蚀变带宽度较大,但向深部延伸及产状变化不确定, 工程布置依据不充分的现状,决定采用地球物探勘 查方法:瞬变电测深法(TEM)+时域激电测深法 (IP)进行探索^[25-27]。

首先测定了矿区内的各类岩(矿)石的电性参数,显示矿床中硫化矿石为中低电阻率(平均值为 288.32 Ω・m),高充电率(平均值为31.78%)地质 体;断层泥为特低电阻率(平均值为175.9 Ω・m), 中充电率(平均值为9.34%)地质体;灰岩(电阻率大 于1 000 Ω・m,充电率平均值为4.77%~5.92%) 与砂岩(平均电阻率约 500 Ω・m,充电率平均值为 13.50%)的电阻率及充电率均有 2~3 倍差异;正长 岩电阻率与灰岩接近,但充电率较灰岩高(平均值为 13.12%);砂泥岩充电率与正长岩、辉绿岩相当,平 均为 13.12%~18.27%。含矿破碎蚀变带与围岩 具有显著的电性差异,使用电阻率和充电率参数,可 大致划分断层带、硫化金矿体、灰岩、砂岩界线^[28]。

工作中布置测线方向为 70° ,瞬变电磁法网度为 $200 \text{ m} \times 50 \text{ m}$,直流激电法网度为 $200 \text{ m} \times 25 \text{ m}$ 。瞬

图 3 长安金矿 0 勘探线物探-地质综合剖面图 (据文献[28],修编)

Fig. 3 Integrated geological-geophysical section along exploration line 0 at Chang'an gold deposit
1. 志留系中上统康郎组白云岩;2. 向阳组一段砂泥岩夹砾岩;
3. 断层破碎带;4. 矿体及编号;5. 正长岩(正长斑岩);6. 断层及编号

变电测深测量结果(图 3)显示,在 F_6 断层带内出现 视电阻率 $16 \sim 160 \Omega \cdot m$ 的特低-中低阻带,在 F_6 断层带的北东和南西侧均出现高阻区; TEM 视电 阻率拟断面清晰地反映了剖面上地层、构造、矿体的 展布形态。时域激电测深(IP)测量结果(图 3)显 示,在 F_6 断层带上方出现明显的视充电率(M_8)异 常,极值达 25%,视电阻率(ρ_8)从西到东逐步降低; 陡梯度带反映了含矿断层,矿体则表现为中低阻。

综合对长安金矿床地质特征的新认识、岩(矿)

石电性、瞬变(TEM)及激电(IP)测深结果,得出新 认知:①矿区向阳组砂泥岩与康郎组灰岩的接触界 面与含金矿破碎带不重合;②F。含金矿破碎带近地 表倾向 NE,中部近于直立,深部微向 W 倾,总体近 于直立。据于此认识,需要确立新的深部勘查工作 布署思路和找矿方向。

3.3 深部勘查工作新方案确定

以往勘查方案是在 F_6 东盘布置直孔施工,控制 向阳组与康郎组的接触界面(图 4b)。新的勘查技 术方案:一是以钻探为勘查手段,根据地形条件在 F_6 东、西两盘布置斜孔(倾角 50°~60°),从浅而深 控制近于直立的 F_6 含金矿破碎带(图 4a);二是重 新确定勘查类型,按基本网度 50 m×60 m 控制 (332)类资源量,以 100 m×120 m 网度控制(333) 类资源量;三是勘查范围重点布置在 8—11 号勘探 线之间长 500 m 的瞬变(TEM) 视电阻率低阻异常 区和激电(IP) 视充电率高值异常区域,深度从 1 600 m~1 200 m标高范围。

3.4 深部找矿勘查新突破

按照深部勘查工作新方案对长安金矿床进行新 的深部找矿勘查,取得了较好效果。扩大了矿体规 模,使矿体从原主要分布在1600m标高向下延深 到1200m标高附近,深部延深增加了400m左右; 矿化在标高1300m~1400m范围出现富集地段, 并且发现矿体有向南侧伏的特点,向南深部尚有找 矿空间。

扩大的矿体区域,其厚度 0.86~60.34 m,平均 17.72 m,金矿石品位 w(Au)=1.37×10⁻⁶~9.92 ×10⁻⁶,平均 4.99×10⁻⁶。本次深部找矿工作探获 金资源量约 20 t,使长安金矿床资源量从20 t增加到 40 t,黄金资源量规模增加了一倍,深部找矿取得重 大突破。

4 结论

(1)通过对长安金矿区成矿地质背景、矿床地质 特征、矿床类型、控矿因素等方面的深入研究,认为 矿床主矿体并非以往认识的受控于加里东期不整合 面,而是受控于 NNW 向陡立的 F。断裂破碎带。通 过采用 TEM+IP 物探方法圈定深部低阻、高充电 率异常,结合成矿地质因素确定深部找矿空间,调整 多年来沿加里东期不整合面找矿的思路和勘查方 案,使深部找矿获得新突破。

图 4 长安金矿 0 勘探线剖面两阶段勘查认识对比图

(a. 据文献[14];b. 据文献[24],修编)

Fig. 4 Section along exploration line 0 at the Chang'an gold deposit showing different philosophies
1. 中上志留统康郎组白云岩; 2. 下奧陶统向阳组一段第三亚段砾岩夹含砾砂岩, 3. 下奧陶统向阳组一段第二亚段砂岩夹砾岩; 4. 辉绿岩; 5. 正长岩(正长斑岩); 6. 断层破碎带; 7. 矿体及编号; 8. 断层及编号; 9. 钻孔; 10. 坑道

(2)随着矿产资源勘查和开发工作的持续开展, 各种地质现象和新资料不断丰富,以往建立的成矿 模式和找矿模型需要不断更新和补充完善,更需要 我们不断总结和创新,深化对成矿规律和控矿因素 等方面研究,才能有效指导生产实践。

参考文献:

- [1] 云南省地质调查院.云南金平一绿春地区金铜评价报告[R]. 昆明:云南省地质调查局,2004.
- [2] 应汉龙,刘和林,杨许中,等. 云南金平铜厂金矿地质特征及 成矿物质来源[J]. 地质与资源,2006,15(4):265-271.
- [3] 王勇,莫宣学,曾普胜,等.长安金矿地质特征及成矿模式[J].矿物学报,2007(增刊):169-170.
- [4] 和中华,王勇,莫宣学,等.云南金平长安金矿成矿物质来 源——来自矿石及地层、岩浆岩的成矿元素含量证据[J].东 华理工大学学报(自然科学版),2008,31(3):207-212.
- [5] 郭春影,高帮飞,刘学飞,等.云南金平长安金矿床稀土元素 特征及其地质意义[J].黄金,2009,30(1):7-11.
- [6] 张静,邓军,李士辉,等. 哀牢山南段长安金矿床岩浆岩的岩石学特征及其与成矿关系探讨[J]. 岩石学报,2010,26(6): 1740-1750.
- [7] 田广,张星培,张长青,等.云南省金平长安金矿岩体年龄及成因探讨[J].矿床地质,2012,31(增刊):795-796.
- [8] 秦德先,张学书,念红,等.金平一黑水河裂谷演化及基性岩

浆成矿作用[M]. 北京: 地质出版社, 2008: 202-205.

- [9] 李文昌,赵志芳,卢映祥,等.云南省遥感地质应用[M].北 京:地质出版社,2009:27-33.
- [10] 云南省地质矿产局. 云南省区域地质志[M]. 北京: 地质出版社, 1990: 1-645.
- [11] 葛良胜,邓军,杨立强,等. 哀牢山矿集区构造环境演化与 金多金属成矿系统[J]. 岩石学报,2010,26(6):1699-1722.
- [12] 毛景文,胡瑞忠,陈毓川,等.大规模成矿作用与大型矿集区[M].北京:地质出版社,2006:196.
- [13] 云南省地质矿产局区域地质调查队.1/20万金平幅、河口幅 区域地球化学图说明书[R].昆明:云南省地质矿产勘查开 发局,1990:1-114.
- [14] 云南黄金矿业集团股份有限公司.云南省金平县长安金矿资 源/储量核实报告[R].昆明:云南黄金矿业集团股份有限公 司,2011.
- [15] 周云满,毛景文,张长青. 滇中小水井金矿床控矿构造与矿 化富集规律[J]. 地质与勘探,2009,45(5):588-594.
- [16] 俞广钧. 哀牢山断裂带原生金矿床的类型及控矿条件[J]. 地质与勘探, 1990, 5(5): 3-11.
- [17] 符德贵,周云满,张长青,等. 滇中小水井金矿煌斑岩地质 特征及与金矿化的关系[J]. 地质与勘探,2010,46(3):414 -425.
- [18] 张建斌,肖红.云南播卡金矿成因分析[J].地质找矿论丛, 2011,26(4):399-405.
- [19] 程光锁,陈安玉,胡来龙,等.挤压域构造变换带内部构造

类型研究——以准噶尔盆地南缘中段构造变换带为例[J]. 地质找矿论丛,2010,25(1):60-64.

- [20] 云南省地质矿产局第一地质大队.黄草岭、谷地新寨幅 1/5 万区域地质调查报告[R].昆明:云南省地质矿产勘查开发 局,2000.
- [21] 毛景文,李晓峰,李厚民,等.中国造山带内生金属矿床类型、特点和成矿过程探讨[J].地质学报,2005,79(3):343-372.
- [22] 陈衍景.造山型矿床、成矿模型及找矿潜力[J].中国地质, 2006,33(6):1181-1196.
- [23] 周云满,张长青,王树琼,等. 滇中小水井金矿床成矿流体 地球化学及成因类型探讨[J]. 矿床地质, 2012: 31(1): 52 -64.

- [24] 云南地矿资源股份有限公司.云南省金平县长安金矿详查地 质报告[R].昆明:云南黄金矿业集团股份有限公司,2002.
- [25] 周云满.物探方法在滇东北地区寻找隐伏矿床的应用效果 [J].地质与勘探,2006,42(3):81-85.
- [26] 任广利, 王核, 刘建平,等. EH4 电磁测深系统在成矿预测 及控矿构造解译方面的应用——以广东河台金矿、安徽桃冲 铁矿为例[J]. 地质找矿论丛, 2013, 28(1): 127-133.
- [27] 李均良,陈振华,符海明. 江西省兴源冲地区深部找矿潜力 评价[J]. 地质找矿论丛, 2012, 27(1): 16-22.
- [28] 云南黄金矿业集团股份有限公司.云南省金平县长安金矿 2010年度物探勘查成果报告[R].昆明:云南黄金矿业集团 股份有限公司,2010.

Breakthrough of gold ore prospecting to depth of Chang'an gold deposit in southern Ailaoshan metallogenic belt

ZHOU Yunman¹ , ZHANG Jialiang² , DONG Wenwei¹ , PU Jiazhong¹

(1. Yunnan Gold & Mining Group Co. Ltd., Kunming, 650224;2. Department of Land and Resources of Yunnan Province, Kunming, 650224)

Abstract: Chang'an gold deposit is one of the breakthroughs made for gold prospecting in Yunnan province during the tenth five year plan. The paper presents geological and metallogenic background, geological characteristics and type of the deposit. The breakthrough is resulted from the new idea that the gold ore bodies are controlled by steep fractural zone of NNW fault instead of unconformity plane between Xiangyang Fm. and Kanglang Fm. The gold ore is located to depth of the deposit with anomlies of low resistivity and high chargeability of TEM+IP survey and geological analysis and gold reserves is enlarged. **Key Words:** Chang'an gold deposit; fractural zone control on ore; (TEM+IP) survey; ore prospecting to depth; southern Ailaoshan metallogenic belt; Yunnan province