doi:10.6053/j.issn.1001-1412.2013.01.011

湖南新宁金家锑矿床地质-地球化学特征

康亚龙1,2

(1. 中南大学地球科学与信息物理学院,长沙 410083;2. 西部矿业股份有限公司,西宁 810001)

摘要: 湖南新宁金家锑矿床是湘中地区较具有经济价值的锑矿床。文章通过矿石稀土元素、微量元素、铅同位素分析以及流体包裹体岩相学观察、均一法测温和包裹体气液相成分分析,研究了金家锑矿床成矿流体的性质及演化。研究表明:①矿石中稀土元素总量 $w(\Sigma REE) = 151.21 \times 10^{-6} \sim 212.41 \times 10^{-6}$,平均180.52×10⁻⁶;LREE/HREE=15.21~18.54,轻稀土富集,具中等负销异常;矿石微量元素蛛网图表明,富集 Rb,U,Th等大离子亲石元素(LILE),而亏损 Nb,Ta,Ti等高场强元素;铅同位素组成²⁰⁶ Pb/²⁰⁴ Pb = 18.032~18.391,²⁰⁷ Pb/²⁰⁴ Pb = 15.403~15.495, ²⁰⁸ Pb/²⁰⁴ Pb=38.025~38.215,表明成矿物质来自深源;②流体包裹体主要为气液两相包裹体,液相成分阳离子以 K⁺, Na⁺, Ca²⁺, Mg²⁺ 为主, 阴离子以 SO²⁻, Cl⁻, F⁻ 为主; 气相成分以 H₂O, CO₂, CH₄ 为主。包裹体均一温度 100~240 ℃,主要为 140~200 ℃,盐度 2.60%~3.80%,表明金家锑矿床为典型的中低温热液矿床,其成矿流体为中-低温、低盐度热液。 **关键词:** 金家锑矿床;成矿物质;成矿流体;地球化学;湖南省

中图分类号: P613;P618.66 文献标识码: A 文章编号: 1001-1412(2013)01-0078-07

0 引言

湖南是我国最重要的产锑地区,国内外众多学 者对湘西、湘中锑成矿带进行过研究^[1-9]。湖南新宁 金家锑矿床是湘中地区较具有经济价值的锑矿床, 但该矿床研究程度低,对其成矿物质、成矿流体的来 源还没有进行过系统的研究。本文根据该矿床区域 地质、矿床地质特征,对该矿床成矿期矿石进行稀土 元素、微量元素、铅同位素研究,对脉石矿物方解石 进行流体包裹体气液相成分测定、均一法测温,以期 确定该矿床成矿物质的来源,探讨成矿流体的性质 及其来源,为认识矿床成因提供新的依据。

1 区域地质概况

湖南新宁金家锑矿床位于 NNE 向公田一灰汤

基金项目: 湖南省自然科学基金项目(编号:07JJ6071)资助。

一新宁深大断裂南东侧,紫云山隆起带 NE 端次级 龙口复式背斜部位。龙口复式背斜轴向近 SN 向, 略向 S倾,两翼基本对称;其核部地层为震旦系,两 翼分别为寒武系、泥盆系。金家锑矿床处于背斜南 部倾伏端。矿区出露地层由老到新依次为:震旦系 下统湘锰组、洪江组,震旦系上统金家洞组、留茶坡 组,寒武系下统,泥盆系中统跳马涧组。其中,寒武 系与震旦系为假整合接触,泥盆系与寒武系为角度 不整合接触。

矿区内褶皱构造较简单,总体为 SE 倾向的单 斜,地层倾向 150°左右,倾角 25°~50°;但深部地层 大部分倾向 SW,为龙口背斜南部倾状端西翼。断 裂构造发育,矿井内及南西外侧发育有一组 NE 向 断裂,共 6条(F_1 — F_6),大致相互平行,断层间距 20 ~280 m 不等,地表走向长 350~750 m,倾向 NW, 倾角 50°~85°,其中,矿界南东外侧的断裂 F_1 及矿 界内的断裂 F_6 与锑矿化关系密切(图 1)。

围岩蚀变主要有硅化、黄铁矿化,次为石墨化、

收稿日期: 2012-02-22; 责任编辑: 赵庆

作者简介: 康亚龙(1967-),男,博士研究生,矿产普查与勘探专业,主要从事金属矿产资源研究工作。E-mail:kangyalong2009@126.com

图1 金家锑矿床地质略图

Fig. 1 Geological sketch of the Jinjia antimony deposit
1. 泥盆系中统跳马洞组; 2. 寒武系下统上段; 3. 寒武系下统下段;
4. 震旦系上统留茶坡组; 5. 震旦系上统金家洞组; 6. 震旦系下统洪江组; 7. 震旦系下统湘锰组; 8. 地质界线; 9. 实测、推测断层;
10. 断裂破碎带及矿体

绢云母化。其中硅化与锑矿化关系密切,具正相关 关系。矿体底板蚀变强,范围大;顶板蚀变较弱,且 范围亦较小。

2 矿床特征

2.1 矿体特征

金家锑矿床 I 号锑矿脉产于断裂 F1 中并严格 受其控制,赋矿围岩为寒武系下统和震旦系上统。I 号锑矿脉地表出露于矿床南西段之南东界外,分布 标高 680~400 m,总体走向 NE,倾向 310°~330°, 倾角 60°,全长 750 m,矿区内约 370 m,往南西延伸 出区外。据坑道揭露,沿倾向标高达250m,倾斜延 伸>530 m。地表锑矿化带宽 0.50~1.73 m,深部 宽一般 0.80~2.50 m,局部地段 15.5 m,由 NE 向 SW逐渐变宽。锑矿化带主要由辉锑矿、石英脉以 及具硅化和碎裂化的围岩角砾、岩块等组成。辉锑 矿主要分布于矿化带顶、底部,大部分地段与顶、底 围岩界线清晰。矿化带中部往往有一条非常醒目的 构造面,断面平整、光滑,波状延展,并可见黑色碳化 或糜棱岩化断层泥,断面产状与矿化带总体产状相 同,辉锑矿化主要分布在上盘,部分地段下盘亦较发 育。

2.2 矿石特征

矿石矿物成分简单,主要为辉锑矿和黄铁矿,偶 见方铅矿和辉锑矿呈脉状、不规则状或浸染状充填 于岩石裂隙或散布于岩石中;脉石矿物主要为石英 和黏土矿物。含锑石英脉沿破碎带长轴方向充填, 是辉锑矿的主要赋存形式之一。

矿石结构主要为他形粒状结构、柱状结构,次为 不等粒镶嵌结构、针状结构。矿石构造主要为致密 块状和细脉状,次为浸染状、囊状,少量为角砾状(图 2a)。

图 2 金家锑矿床矿石(a)和方解石中流体包裹体(b)显微照片 Fig. 2 Photomicrographs of fluid inclusions in ore and calcite of the Jinjia antimony deposit

矿石类型按结构构造可划分为浸染状矿石和块 状矿石;按围岩组成可划分为石英脉型、硅化岩型、 角砾岩型、白云岩砂岩型、粉砂岩型砂质板岩、板岩 型等矿石。

3 地球化学特征

3.1 样品采集与测试方法

稀土元素、微量元素分析样品为矿石样;铅同位 素分析样品为矿石中的黄铁矿单矿物;包裹体测试 样品均采自成矿阶段矿石中的方解石单矿物,将其 磨制成厚度约为 0.2 mm 双面抛光的光薄片做岩相 学与流体包裹体观察。 微量元素、稀土元素和铅同位素由中南大学地 质研究所 ICP-MS 实验室测定。流体包裹体成分测 定、流体包裹体测温分别由中南大学地质研究所流 体包裹体气液相成分测定实验室和流体包裹体测温 实验室完成。

3.2 稀土元素和微量元素

(1)金家锑矿区稀土元素、微量元素测试结果 (表 1)表明,金家锑矿床矿石中稀土元素总量 (Σ REE)较高,为151.21×10⁻⁶~212.41×10⁻⁶,平 均180.52×10⁻⁶。轻稀土含量(LREE)为109.95× 10⁻⁶~150.83×10⁻⁶,平均129.15×10⁻⁶;重稀土 含量(HREE)为16.98×10⁻⁶~21.37×10⁻⁶,平均 19.03×10⁻⁶;LREE/HREE=15.21~18.54,平均

表 1	金家锑矿床稀土元素、微量元素组成和相关参数

样号	XJW-2	XJW -3	XJW-4	XJW -5	XJW-6	XJW-7	XJW-8
La	54.26	35.11	38.84	52.98	39.19	42.71	50.11
Ce	94.93	66.91	75.53	90.33	71.09	76.96	81.29
Pr	10.86	7.79	8.85	10.53	8.36	9.14	10.21
Nd	34.44	26.69	28.53	33.01	28.43	31.76	32.83
Sm	5.81	4.57	4.61	5.58	4.70	4.78	5.31
Eu	0.98	0.81	0.85	0.92	0.83	0.88	0.91
Gd	3.81	3.18	3.28	3.61	3.28	3.35	3.50
Tb	0.52	0.47	0.48	0.44	0.49	0.48	0.48
Dy	2.77	2.48	2.49	2.61	2.55	2.55	2.64
Ho	0.57	0.46	0.47	0.51	0.47	0.49	0.50
Er	1.50	1.21	1.24	1.41	1.25	1.28	1.38
Tm	0.25	0.19	0.21	0.23	0.23	0.2	0.26
Yb	1.48	1.16	1.26	1.42	1.23	1.33	1.37
Lu	0.23	0.18	0.19	0.20	0.20	0.19	0.21
Υ	14.05	10.83	11.79	13.74	11.21	12.28	12.92
∑REE	212.41	151.21	166.83	203.78	162.30	176.10	191.0
LREE	150.83	109.95	121.65	143.98	116.69	126.87	134.0
HREE	21.37	16.98	18.13	20.56	17.63	18.8	19.76
LREE/HREE	18.08	15.21	16.34	18.54	15.73	16.84	17.47
$(La/Yb)_N$	26.3	21.71	22.11	26.76	22.85	23.03	26.24
δ(Eu)	0.60	0.62	0.64	0.59	0.61	0.64	0.61
δ(Ce)	0.90	0.95	0.96	0.88	0.92	0.91	0.83
Rb	31.33	72.02	24.57	193.05	133.25	195	9.23
Ba	86.38	202.3	184.8	595	705.6	564.2	19.88
Th	6.23	4.49	2.51	26.04	28.7	21.28	4.96
U	1.74	0.57	0.56	3.84	3.43	3.53	1.29
Nb	5.04	3.92	3.92	10.50	10.36	10.64	8.54
Ta	0.42	0.28	0.28	1.40	1.26	1.26	1.12
Nd	18.20	11.48	23.38	28.70	24.64	26.46	10.64
Zr	142.80	95.20	53.20	215.60	204.40	245.00	102.20
Hf	3.92	2.66	1.68	6.58	6.16	7.00	3.64
Ti	0.92	0.74	1.05	0.70	0.64	0.74	0.88

Table 1 Contents and parameters of RFF and trace elements in the linita antimony deposit

量的单位:w_B/10⁻⁶

16.89,表明轻稀土强烈富集,重稀土严重亏损。
(La/Yb)_N=21.71~26.76,平均 24.14;δ(Eu)=
0.59~0.64,平均 0.62,具中等负销异常。从稀土
元素配分模式图(图 3)可见,矿区矿石标准化曲线
为一组右倾曲线。

(2)从微量元素原始地幔标准化蛛网图(图 4)可见,矿区微量元素富集 Rb,U,Th 等大离子亲石元素(LILE),而相对亏损 Nb,Ta,Ti 等高场强元素。

3.3 铅同位素

从铅同位素分析结果(表 2)可见,金家锑矿床 矿石中黄铁矿的铅同位素组成²⁰⁶ Pb/²⁰⁴ Pb=18.032 ~18.391,²⁰⁷ Pb/²⁰⁴ Pb=15.403~15.495,²⁰⁸ Pb/

in the Jinjia antimony deposit								
样号	$^{206} {\rm Pb}/^{204} {\rm Pb}$	$^{207}Pb/^{204}Pb$	$^{207}\rm{Pb}/^{204}\rm{Pb}$					
JIN-2	18.183	15.453	38.112					
JIN-4	18.032	15.482	38.053					
JIN-6	18.044	15.477	38.165					
JIN-8	18.234	15.431	38.111					
JIN-10	18.152	15.424	38.101					
JIN-12	18.215	15.413	38.104					
JIN-14	18.288	15.444	38.173					
JIN-16	18.059	15.403	38.025					
JIN-18	18.075	15.484	38.089					
JIN-20	18.178	15.493	38.140					
JIN-22	18.391	15.495	38.102					
JIN-24	18.069	15.417	38.215					
JIN-26	18.052	15.450	38.128					
JIN-28	18.179	12.425	38.075					
JIN-30	18.193	15.471	38.121					
JIN-32	18.288	15.429	38.139					

表 2 金家锑矿黄铁矿的铅同位素组成 Table 2 Lead isotope composition of pyrite

²⁰⁴ Pb=38.025~38.215。从铅同位素构造环境模式(图 5)可见,金家锑矿床黄铁矿具有相对稳定的铅同位素组成,数据投影在地幔演化线上,反映了矿石中铅主要来自于深源。

4 包裹体地球化学

4.1 岩相学

4.2 均一法测温

根据包裹体均一法测温结果(表 3),金家锑矿 方解石中流体包裹体温度范围为 100~240 ℃。流 体包裹体均一温度直方图(图 6)中,峰值在 140~ 200 ℃范围分布明显,表明热液矿化期为中低温阶 段。

流体包裹体的盐度是根据包裹体冷冻回温后最 后一块冰融化的温度(冰点),利用 Hall 等(1988)的 方程计算得出,盐度换算公式为:

 $S = w \text{ (NaCl)} = 0.00 + 1.78t_{\text{m}} - 0.044 \ 2t_{\text{m}}^2 + 0.000 \ 557t_{\text{m}}^3$

式中,S为盐度(%),t_m为冰点温度。

根据上述公式得出,金家锑矿方解石中流体包 裹体盐度范围为2.07%~4.80%(表3)。流体包裹 体盐度直方图(图7)中显示盐度主要为2.60%~ 3.80%,属低盐度。

4.3 气液相成分

采用4件样品分析了金家锑矿床矿石中方解石包 裹体的气相、液相成分,分析结果及相关参数见表4。 从表4可见,包裹体液相成分中,阳离子主要为Ca²⁺, K⁺,Na⁺,Mg²⁺,且K⁺<Na⁺(Na⁺/K⁺=1.06~1.50) 的特征明显,锑的成矿阶段具有K⁺+Na⁺明显<Ca²⁺ +Mg²⁺(K⁺+Na⁺/Ca²⁺+Mg²⁺=0.04~0.07)的特 征; 阴离子主要有 HCO₃⁻,SO₄⁻⁻,Cl⁻,F⁻等,其中 HCO₃⁻离子含量最高。成矿流体中Cl⁻>F⁻(F⁻/Cl⁻ =0.67~0.91)的特征明显。包裹体气相成分主要为 H₂O,CO₂,CH₄,H₂,其中H₂O占绝对优势,说明成矿 流体为热水溶液,富含CO₂。气相组分中有较多CH₄ 和H₂。

表 3 金家锑矿矿石方解石中流体包裹体参数 Table 3 Parameters of fluid inclusion of Jinjia antimony deposit

样号	类型(数量)	大小/µm	气液比/%	均一温度/℃	冰点/℃	盐度/%
JIN-15	V-L(16)	$5 \sim 10$	$5 \sim 20$	$100 \sim 190$	$-1.2 \sim -2.5$	2.07~4.18
JIN-16	V-L(10)	$5 \sim 15$	$5 \sim 20$	$110 \sim 240$	$-1.8 \sim -2.9$	3.06~4.80
JIN-17	V-L(14)	$5 \sim 10$	$10\!\sim\!25$	$120\!\sim\!200$	$-1.5 \sim -2.1$	2.57~3.55

表 4 金家锑矿床矿石中方解石流体包裹体气-液相成分及相关参数

Table 4 Composition and correlative parameters of volatiles and ions of the fluid

inclusions from Jinjia antimony deposit

								-		
样号	K^+	Na ⁺	Ca^{2+}	Mg^{2+}	Li ⁺	F^{-}	Cl-	HCO_3^-	SO_4^{2-}	pН
XJ-3	0.8	0.9	38.53	0.65	0.03	1.2	1.8	117.4	1.9	7.2
XJ-7	0.64	0.68	26.84	0.75	0.11	2.1	2.3	106.7	1.6	6.8
XJ-9	1.2	1.3	50.12	1.56	0.05	2.5	2.9	157.89	2.7	7.3
XJ-17	1.4	2.1	46.78	2.34	0.09	3.6	4.3	165.94	3.6	6.5
样号	H_2	CH_4	CO_2	$H_2 O$	F^{-}/Cl^{-}	$\mathrm{Na^+}/\mathrm{K^+}$	$Na^+/(Ca^{2+}+Mg^{2+})$	$(K^+ + Na^+)/(Ca^{2+} + Mg^{2+})$	$(H_2 + CH_4)/CO_2$	
XJ-3	3.93	19.95	71	806	0.67	1.13	0.02	0.04	0.34	
XJ-7	4.71	20.33	74	798	0.91	1.06	0.02	0.05	0.34	
XJ-9	3.24	20.59	40	868	0.86	1.08	0.03	0.05	0.59	
XJ-17	2.98	20.5	41	884	0.84	1.50	0.04	0.07	0.58	

量的单位:wB/10⁻⁶

5 讨论

综上所述,从金家锑矿区稀土元素标准化曲线 可以看出,矿石稀土元素标准化曲线形式相似,表明 本区原始成矿物质来源一致,为轻稀土富集、重稀土 亏损的右倾曲线。微量元素富集 Rb,U,Th 等大离 子亲石元素(LILE),而相对亏损 Nb,Ta,Ti 等高场 强元素。铅同位素构造模式图投影显示,本区铅主 要为深源。

成矿流体的 Na⁺/K⁺和 F⁻/Cl⁻可作为判别流 体来源的一个标志^[13],一般情况下,岩浆热液 Na⁺/ K⁺<1,经计算,金家锑矿成矿阶段石英 Na⁺/K⁺ = 1.06~1.50,不具岩浆热液特征。成矿阶段阴离子 中 SO₄²⁻>Cl⁻>F⁻,故其成矿热水应是富钠的硫酸 盐型热卤水^[14]。金家锑矿成矿流体含有代表还原 环境的 CH₄ 等轻烃成分,说明本区成矿过程处于还 原环境,成矿流体的还原性有利于 Sb 元素以硫化物 的形式沉淀富集。另当 F⁻/Cl⁻<1 时反映出大气 降水(或地层流体)的特征,由表 4 可知,本区样品中 F⁻/Cl⁻<1(0.67~0.91),表明有大气降水的加入。 金家锑矿成矿流体应为 Na⁺ - K⁺ - Ca²⁺ - Mg²⁺ -Cl⁻ - SO₄²⁻ 体系,盐度为2.07%~4.80%,成矿温度 为 100~240 ℃,属于中-低温、低盐度流体。

6 结论

(1)金家锑矿床稀土元素总量 w(ΣREE) =
 151.21×10⁻⁶~212.41×10⁻⁶,平均值为180.52×

10⁻⁶; LREE/HREE=15.21~18.54,轻稀土富集, 具中等负销异常,标准化曲线为一组右倾曲线。微 量元素富集 Rb,U,Th 等大离子亲石元素(LILE), 而亏损 Nb,Ta,Ti 等高场强元素。

(2)金家锑矿床铅同位素组成²⁰⁶ Pb/²⁰⁴ Pb =
18.032~18.391;²⁰⁷ Pb/²⁰⁴ Pb = 15.403~15.495;
²⁰⁸ Pb/²⁰⁴ Pb = 38.025~38.215,表明成矿物质来源 为深源。

(3) 金家锑矿床流体包裹体主要为气液两相包 裹体,液相成分阳离子子以K⁺,Na⁺,Ca²⁺,Mg²⁺为 主,阴离子以SO²⁻,Cl⁻,F⁻为主,气相成分以 H₂O,CO₂,CH₄为主,流体包裹体的均一温度100 ~240℃,主要为140~200℃,盐度为2.60%~ 3.80%,揭示出金家锑矿床为典型的中低温热液矿 床,其成矿流体为中-低温、低盐度热液。

参考文献:

- [1] 刘鹏程,唐清国,李惠纯. 湖南龙山矿区金锑矿地质特征、富集 规律与找矿方向[J]. 地质与勘探,2008,44(4):31-38.
- [2] 刘正庚,余景明,刘升友,等. 湖南沃溪金锑钨矿床稀土元素特 征研究[J]. 矿床地质,2000,19(3):270-280.
- [3] 顾雪祥, Oskar Schulz, Franz Vavtar,等. 湖南沃溪钨-锑-金矿 床的矿石组构学特征及其成因意义[J]. 矿床地质, 2003, 22
 (1):107-120.
- [4] 顾雪祥,刘建明,Oskar Schulz,等. 湖南沃溪钨-锑-金建造矿床 同生成因的微量元素和硫同位素证据[J]. 地质科学,2004,39 (3):424-439.
- [5] 顾雪祥,刘建明,Oskar Schulz,等. 湖南沃溪金-锑-钨矿床成因的稀土元素地球化学证据[J]. 地球化学,2005,34(5):428-442.
- [6] 马东升,潘家永,解庆林.湘中锑(金)矿床成矿物质来源──
 Ⅲ.同位素地球化学证据[J].矿床地质,2003,22(1):78-87.
- [7] 卢新卫,马东升. 湘中锑矿带断裂体系分维及其对成矿流体运 移和矿床定位的指示作用[J]. 矿床地质,1999,18(2):168-

174.

- [8] 彭建堂,张东亮,胡瑞忠,等.湘西渣滓溪钨锑矿床白钨矿中稀 土元素的不均匀分布及其地质意义[J].地质论评,2010,56 (6):810-819.
- [9] 董树义,顾雪祥,Oskar Schulz,等. 湖南沃溪 W-Sb-Au 矿床成 因的流体包裹体证据[J]. 地质学报,2008,82(5):641-647.
- [10] 赵振华. 微量元素地球化学原理[M]. 北京:科学出版社, 1997:10-100.
- [11] Zartman R E, Doe B R. Plumbtectonics: the model[J]. Tec-

tonophysics, 1981, 75(1/2): 135-162

- [12] 路远发. Geokit: 一个用 VBA 构建的地球化学工具软件包 [J]. 地球化学,2004,33(5):459-464.
- [13] Ulrich T, Gunther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399(17): 676-679.
- [14] Ran Chongying. On ore source and ore-forming fluid of Dongchuan-Yimen type copper deposit [J]. Sciences in China: Series B. 1989,32(9):1117-1124.

Geochemical characteristics of the Jinjia antimony deposit in Xinning county, Hunan Province

KANG Yalong^{1,2}

(1. School of Geosciences and Info-Physics, Central South University, Hunan Province, Changsha 410083, China;
 2. Western Mining Company, Qinghai, Xining 810001, China)

Abstract: Jinjia antimony deposit is a economic ore deposit in Xiangzhong (Middle Hunan) area. According to the analysis of REE, trace elements, Pb isotopes, gas-liquid composition of fluid inclusions and petrographic observation of the ore, nature and evolution of ore fluid are studied. The analysis indicates that: $①\Sigma$ REE is from 151. 21×10^{-6} to $212. 41 \times 10^{-6}$, average at 180.52×10^{-6} , enriched in LREE, and displays right-inclined REE patterns with pronounced negative Eu anomalies in the chondrite normalized REE diagrams; the ore is rich in LILEs of Rb, U and Th, depleted Nb, Ta and Ti based on the primitive mantle-normalized trace element spider diagram; ²⁰⁶Pb/²⁰⁴ Pb in range of 18.032 to 18.391, ²⁰⁷Pb/²⁰⁴ Pb in range 15.403 to 15.495, ²⁰⁸Pb/²⁰⁴ Pb in range of 38.025 to 38.215 indicate mainly mantle source of the oreforming materials; ②mainly gas and liquid, two phase occur in fluid inclusions, in liquid phase K⁺, Na⁺, Ca²⁺, Mg²⁺ are the main cations and SO₄²⁻, Cl⁻, F⁻ the main anions; in gas phase H₂O, CO₂, CH₄ are dominated. Homogenization temperature is 100-240 °C but concentrated at 140-200 °C. Salinity is 2.60%-3.80%. The data above show that this deposit is a meso-epithermal antimony deposit.

Key Words: Jinjia antimony deposit; ore fluid; ore-forming material; geochemistry; Hunan province