红卓斑岩型铜矿床地球化学特征 及找矿模型研究

陈 旭1,李佑国2,任光明2,张玫玫1

(1. 成都理工大学 环境与土木工程学院,成都 610059;

2. 成都理工大学 地球科学学院,成都 610059)

摘 要: 红卓铜矿具有很好的斑岩铜矿找矿前景,研究区岩体的地球化学特征表明铜矿床为岛 弧型斑岩铜矿,成矿岩体具有壳幔混合岩的特点;通过对斑岩体、蚀变分带及找矿标志研究,建立 了红卓斑岩型铜矿找矿模型。

关键词: 红卓斑岩铜矿;义敦岛弧;矿床地球化学特征;找矿模型;四川省 中图分类号: P612;P618.41 文献标识码: A 文章编号: 100+1412(2007)03-0184-06

0 引言

找矿模型是在成矿模式基础上,突出了矿化信息,明确了探测的目标及其形成(或引起)的各类标志。随着找矿难度增大,人们已致力于寻找隐伏矿和难识别矿;综合物探化探方法已成为现代地质找 矿勘查的一种重要手段,其作用将越来越大。大型、 超大型矿床的发现对国民经济发展有着举足轻重的 作用。开展大型-超大型矿床的成矿环境、成矿条 件、矿床地质特征的研究已成为重要课题。虽然大 型-超大型矿床的分布具有独特性或 点型特征, 但从已知大型-超大型矿床产出的特殊区域地质背 景、区域地球物理-地球化学特征、矿床与周围地质 -地球物理-地球化学环境的关系等研究矿床的成 矿机制和形成规律,进而建立矿床的找矿模型,作为 预测和勘查大型-超大型矿床的类比和求异 的 依据,仍然是一种基本和有效的方法。

西南三江地区是我国最重要的有色金属成矿 带,铜、铅、锌、银、金、锡等优势矿产资源潜力巨大。 红卓斑岩铜矿位于三江北段义敦岛弧有色、贵金属 矿产地集中区南部,地质构造复杂、成矿条件优越。 义敦岛弧已经发现了多个大型斑岩铜矿(如普朗铜 矿、雪鸡坪铜矿), 红卓斑岩铜矿是近期发现的又一 个有潜力的斑岩铜矿。我们研究红卓斑岩铜矿的成 矿条件、矿床成因,总结矿床的地质、地球化学、地球 物理特征,建立找矿模型对指导区域铜矿床的找矿 有着重要意义。

1 区域地质背景

红卓铜矿位于 三江 成矿带中段东部的四川省 稻城县东义区红卓 那朗一带,向北进入云南,与浪 都 卓玛斑岩带相接;构造上位于血浴 肯楚破背 斜北倾伏端,那朗 阁田断层与郝才楚 肯楚断层 之间;矿区出露上三叠统图姆沟组(T₃t)中、下段地 层。下段的主要岩性为钙质板岩、灰黑色板岩和大 理岩化、片理化生物灰岩,偶见蚀变玄武岩、安山岩 及凝灰岩透镜体;中段的主要岩性为蚀变安山岩、蚀 变英安岩及岩屑晶屑凝灰岩、角砾凝灰岩及灰黑色 板岩、变质砂岩、大理岩。

2 含铜岩体特征

与印支期火山岩同源的石英闪长玢岩、闪长玢

收稿日期: 2006 06 05

基金项目:中国地质调查局地质调查项目(200310200018)资助。

作者简介: 陈旭(1981), 男, 浙江东阳人, 博士研究生, 2006 年获成都理工大学理学硕士学位, 现为成都理工大学环境水文地质专业博士研 究生, 从事环境水文地质学及岩石学、矿床地球化学研究。

岩脉成群成带分布(图1)。经初步踏勘,共圈定闪 长玢岩株 20个,岩株露头面积 5 050~ 930 450 m², 岩株多呈圆状、椭圆状,少数呈不规则状。岩株内硅 化、黄铁矿化、绢云母化、青磐岩化普遍、岩株接触带 局部可见夕卡岩化,这些蚀变均与成矿密切相关。 经踏勘检查和少量槽探揭露,发现其中2,4,10号斑 岩株铜多金属矿化强烈。

Fig. 1 Geologic map of the Hongzhuo copper deposit 1. 勉嘎组上段:砂板岩互层 2. 勉嘎组中段: 流纹岩、流纹质角砾 熔岩 3. 面嘎组下段: 砂岩、砾岩和板岩夹凝灰岩 4. 第四系 5. 闪 长玢岩 6. 石英闪长玢岩 7. 实测/ 推测断层 8. 地质界线

2号含铜闪长玢岩株, 规模 10 070 m², 椭圆状, 岩株内具硅化、绢云母化、绿泥石化、碳酸盐化、接触 带上发育夕卡岩化、角岩化、硅化。岩体内见细脉 状、星点状黄铜矿化、黄铁矿化,w(Cu) = 0.44%。

4号铜多金属矿化闪长玢岩株,规模 100 120 m²,浑圆状,岩株内部硅化强烈,与成矿关系密切, 外部绿泥石化、绢云母化、千枚岩化、夕卡岩化、碳酸 盐化蚀变发育;接触带上夕卡岩化、角岩化发育。岩 体内部见细脉状、星散状黄铜矿、黄铁矿、方铅矿、闪 锌矿,采样分析: $w(Cu) = 0.51\% \sim 0.60\%$,w(Pb)= 0.56%, w (Zn) = 0.37%, w (Ag) = 10.4 10^{-6}

10号铜多金属矿化闪长玢岩株的分布范围 360 150 m², 呈不规模状, 岩株内硅化强烈, 偶见钾 化、外部绿泥石化、绢云母化、碳酸盐化发育、接触带 上见夕卡岩化、角岩化、硅化。岩株内见细脉状、浸 染状黄铜矿、方铅矿、闪锌矿、采样分析 w (Cu) = 0. $17\% \sim 1.11\%$, w (Pb) = 0. $45\% \sim 9.12\%$, w (Zn) $= 0.21\% \sim 1.11\%$, $w(Ag) = 10.9 \quad 10^{-6} \sim 333$ 10⁻⁶。含矿斑岩体与围岩具有极化率和磁性差异。 激电中梯测量以。= 4% 为异常下限,在区内圈出 8 001 500 m² 的异常区,异常 。极大值超过 10%, 向北西进入云南境内。异常具多个高异常中心.显 示良好找矿前景。

含矿岩体的地球化学特征 3

3.1 岩石化学特征

红卓岩体的岩石化学分析数据列于表1中。由 表1可以看出,红卓岩体的 w(SiO2) = 57% ~ 65%, w(Al2O3)> 14.6%,w(MgO)< 3.4%,属于中性岩 类。经计算、红卓岩体的里特曼指数 = $1.5 \sim 2.5$ 、 赖特碱度率 AR= 1.6~ 2.3, 属于钙碱性岩浆系列; 分异指数 DI= 55~ 70,分异程度较高;长英指数 (FL)和镁铁指数(MF)的数值较高,表明岩浆分离 结晶程度较高。

表1 红卓矿区岩石化学成分 .

C T T

		I ab	le I P	etroche	emistry o	of Hong	gzhou a	rea				<i>w</i> _B /	%
样品号	岩石类型	SiO_2	$\mathrm{Al}_2\mathrm{O}_3$	TiO_{2}	Fe_2O_3	FeO	MgO	CaO	Na ₂ O	K_2O	M nO	P_2O_5	LOI
U 1 N 191	绿泥石- 绢云母化英安玢岩	64.35	15.25	0.75	1.47	4.17	2.11	2.76	4.49	1.19	0.075	0.15	2.54
U 1 N 192	绿泥石- 绢云母化英安玢岩	62.18	14.88	0.75	1.87	3.50	1.85	3.01	5.72	1.14	0.079	0.13	4.33
U 1 N 193	绢云母- 碳酸盐化英安玢岩	59.92	15.73	0.94	1.13	1.27	2.83	5.84	3.42	1.28	0.026	0.17	6.32
U1N 195	蚀变含石英闪长玢岩	57.82	14.67	0.77	3.23	1.83	3.21	9.91	4.41	1.14	0.11	0.17	2.85
U1N 196	蚀变含石英闪长玢岩	60.41	15.94	0.67	1.98	3.76	3.39	3. 57	4.31	0.49	0.046	0.10	3.43

根据红卓岩体在硅- 碱图(图 2)和 SiO₂-FeOr / MgO 图(图3) 上投点表明, 红卓岩体属于钙 碱性岩石系列。

3.2 微量元素、稀土元素特征

红卓岩体的微量元素(表 2) 具有 Ba, Th, U 富 集, Nb, Ta, Sr, P, Ti 亏损的特征(图 4)。Nb, Ta 的 亏损显示了岛弧环境的特点, Sr, P 亏损表明存在一 定量的地壳物质混染, Ba, U, Th 的富集暗示岩浆源 区存在(深源)流体活动。Rb/Sr= 0.03~0.1, 显示

图 3 SiO₂ - FeOT/ MgO 图解(据 Miyashio, 1974) Fig. 3 SiO₂-FeOT/MgO plot

近幔源的壳幔混合层特征。

红卓岩体的稀土元素呈现出更窄的轻稀土含量 范围(表3,图5),几乎无Eu异常((Eu)=0.82~ 1.28),其La/Yb比值也比较低,说明岩浆来源较深 的下地壳。

表 2 红卓矿区岩、矿石微量元素组成

		T ab	le 2	Trac	e ele	ment of	comp	ositio	n of :	rock a	ind o	re in l	Hong	;zho u	area			1	v _B /1	0-6
编号	As	Ba	Co	Cr	\mathbf{Cs}	Fe	Ηf	K	Na	Rb	${\rm Sb}$	Та	Th	U	Cu	Mo	Pb	Zn	Au	Ag
U1N191	862	765	10.3	9.7	2.5	4.02	3.5	1.12	2.84	61.6	3.4	0.9	9.1	2.4	10.6	2.2	47.9	26.5	17	0.71
U1N192	28.2	656	9.6	9.3	2.4	3.77	4.5	0.76	3.74	40.2	2.6	0.7	7.9	1.6	16.5	2.3	44.7	70.5	2.8	1.27
U 1N 193	27.9	208	4.6	12.4	2.8	1.58	3	0.54	2.81	11.5	6.2	0.67	6.7	1.8	43.4	2.1	48.4	88	19	0.35
U 1N 195	68	1037	14.8	23.2	5.6	4.31	3.3	1.13	2.66	40.8	5.2	0.8	9.2	1.7	131	3.4	68	67	21	1.2
U1N196	71.3	626	16.8	27.3	3.4	4.62	3.4	0.43	2.99	24.1	2.7	0.75	9.3	2.5	43.2	2	39.4	100	22	1.48

表 3 红卓稀土元素分析表 Table 3 REE analysis for Hongzhou area

 $w_{\rm B}/10^{-6}$

								-						
样品号	La	Ce	Pr	Nd	Sm	Εu	Gd	Tb	Dy	Нo	Er	Τm	Yb	Lu
U1N191	20.70	46.20	5.11	19.80	2.70	0.74	2.77	0.49	3.25	0.71	2.01	0.30	1.89	0.27
U 1 N 192	23.80	54.10	5.51	20.70	2.83	0.97	3.40	0.56	3.54	0.72	1.94	0.27	1.62	0.25
U 1 N 193	18.40	47.00	4.94	20.00	3.10	0.90	2.13	0.37	2.44	0. 52	1.47	0.22	1.35	0.21
U 1 N 195	21.40	47.80	4.63	16.80	2.65	1.01	2.07	0.38	2.58	0. 58	1.69	0.26	1.69	0.25
U1N196	22.40	50.50	5.03	18.60	2.78	0.82	2.06	0.38	2.62	0. 59	1.76	0.27	1.79	0.28
样品号		REE		LREE/ H REE			(Eu)		(Ce)		$(\mbox{ La}/\mbox{ Yb})_{\mbox{ N}}$		$(La/Sm)_N$	
U1N	U1N191 106.93			8.15			0.90		0. 92		6. 50		4. 79	
U1N	U 1N 192 120. 23			8.76			06	0.	96	8.72		5.26		
U1N	U1N193 103.07		10. 82			1.11		1.01		8.09		3.71		
U 1N 195		1	103.78 9.9		9.93		1.	39	0.	0.96		7.52		05
U1N196 109.88		09.88	10. 27			1.	10	0.	96	7.43		5.04		

注:样品由西南冶金测试所和成都理工大学应用核技术研究所分析;采用 Boynlon(1984)球粒陨石推荐值标准化,(Ce),(Eu)和 REE

采用内插法进行估算。

Fig. 4 Spider net figure of trace element

3.3 构造环境与含矿潜力分析 根据研究区内稳定性微量元
素 Nb, Ta, Y, Yb 在环境判别图
上的投点位置(图 6), 红卓地区
为火山弧(岛弧)环境, 这与稀土
元素和微量元素特征所得到的推
论一致。

红卓地区岩浆的起源深度比 较大,而带有幔源(岛弧俯冲带) 岩浆的地球化学特征,具有很好 的斑岩铜矿的成矿前景。本区岩 浆岩与埃达克岩极为相似,为钙 碱性岩浆岩,w(SiO₂) > 56%, w(AbO₃) > 15%, w(MgO) <

3%, 贫 Y 和 Yb(Y< 18 10⁻⁶, Yb< 1.9 10⁻⁶), 高 Sr, LREE 富集, 无 Eu 异常。当幔源流体或岩浆 大规模进入下地壳而诱发中酸性岩浆活动时, 在地 幔中富集的铜元素也被带入到斑岩体中。因而, 这 种埃达克质斑岩具备大规模成矿的潜力。埃达克岩 是一种成矿母岩, 有利于形成大型-超大型斑岩铜 矿。

4 红卓斑岩铜矿找矿模型

通过对红卓斑岩型铜矿床的研究,我们确定了 矿床的成因类型、物质来源。并在此基础上结合斑 岩体的研究、蚀变分带研究及找矿标志研究(地球物 理标志、地球化学标志、蚀变标志、微观矿化标志),

图 5 红卓岩体稀土元素配分图

Fig. 5 REE pattern of Hongzhuo rock body

图 6 log Rb- log(Y+ Nb)和 log Nb- log Y 图解(据 Pearce, 1984) Fig. 6 log Rb log(Y+ Nb) and log Nb- log Y plot WPG. 板内花岗岩类 VAG. 火山岛弧花岗岩 Sym COLG. 同碰撞花岗岩类 ORG. 洋脊型花岗岩

总结红卓斑岩铜矿的地质、地球化学、地球物理特征,建立红卓斑岩型铜矿找矿模型(表4)。从而进 一步指导本区域斑岩型铜矿的找矿。

5 结论

(1)通过对研究区的岩体进行常、微量元素分析 表明红卓斑岩铜矿为岛弧型斑岩铜矿,成矿岩体具 有壳幔混合岩的特点,成矿物质为深部来源。

(2)通过对斑岩体的研究、蚀变分带研究及找矿 标志研究(矿田地球物理标志、矿田地球化学标志、 蚀变标志、微观矿化标志)基础上,建立红卓斑岩型 铜矿找矿模型,从而对本地区斑岩铜矿找矿有一定 的指导意义。

表4 红卓斑岩铜矿找矿模型

Table 4 The ore-searching model of HongZhuo porphyry copper deposit

标志分类	特征
区域构造位置	三江 成矿带中段东部,义敦岛弧带
区域地层	图姆沟组中、下段
含矿围岩	钙质板岩、灰黑色板岩、大理岩化、片理化生物灰岩
含矿母岩	与印支期火山岩同源的石英闪长玢岩
蚀变分带	岩株内部硅化、绢云母化、绿泥石化、碳酸盐化,接触带上夕卡岩化、角岩化、硅化发育
地表直接找矿标志	孔雀石化
遥感特征	遥感影像以面型蚀变和线环构造为主,部分面型蚀变与侵入岩重合,预示区内有较多侵入体尚未发现。
区域重力场	重力异常在得荣、耳泽 独霍根显示为正异常
区域磁场特征	区域负异常
区域地球化学场	面积数千平方千米,铜的区域性正异常,显示出铜的成矿作用有巨量物质来源,具备 地球化学块体谱系 成矿理论 寻找大型-超大型矿集区的基本条件
矿区地球物理特征	含矿斑岩体与围岩具有极化率和磁性差异。激电中梯测量以 。= 4% 为异常下限,异常 。极大值超过 10%。
矿区地球化学场	1:5万化探异常明显, Cu最大值达到136 10-6, 衬值1.61, CuMo综合异常明显, 表现为CuMo中心; 梯度变化 很明显, 中心异常显著: CuAuPb-Zn-Mo-Ag, CuAuMo为中心, Pb-Zn为环带水平分带
岩石化学特征	为钙碱性系列花岗岩, 富 Ba, 亏损 Nb, T a 为特征, 本区的构造环境为岛弧, 成矿物质来源于地幔
矿化特征	黄铜矿、斑铜矿呈浸染状和脉状、网脉状(浸染状矿化和脉状矿化),可见黄铁矿、方铅矿、闪锌矿
成矿时代	印支晚期
矿床类型	岛弧型斑岩铜矿
矿床成因	俯冲造山环境下的过渡岩浆作用

(3) 红卓铜矿床可能为普朗 雪鸡坪铜矿带的 北延, 红卓铜矿床具有很好的成矿前景, 具有形成大 型斑岩铜矿的潜力。

(4)根据成矿系统理论,斑岩铜矿具有成带出现 的特点;我们认为本区可能存在类似的斑岩铜矿,本 地区可以作为重点工作区。

- [6] 任秉琛,杨兴科,李文明,等.东天山土屋特大型斑岩铜矿成矿 地质特征与矿床对比[J].西北地质,35(3):67-75.
- [7] 曾普胜,王海平,莫宣学,等.中甸岛弧带构造格架及斑岩铜矿 前景[J].地球学报,2004,25(5):535-540.
- [8] 张洪涛,陈仁义,韩芳林.重新认识中国斑岩铜矿的成矿地质 条件[J].矿床地质,2004,23(2):150-163.
- [9] 曾普胜,侯增谦,李丽辉,等. 滇西北普朗斑岩铜矿床成矿时代 及其意义[J]. 地质通报,2004,23(11):1128-1131.
- [10] 曾普胜、莫宣学、喻学惠,等. 滇西北中甸斑岩及斑岩铜矿[J]. 矿床地质,2003,22,(4):393-400.
- [11] Atkinson William W, Ware Hunter. Comb quartz layers in the porphyry copper deposit at Yerington, Nevada[J]. Abstracts with Programs- Geological Society of America, 2002, 34, (5): 15.
- [12] Alan H Clark, Douglas A Archibald, rew W Lee, et al. Laser Probe 40Ar/39Ar Ages of Early- and Late- stage Alteration Assemblages, Rosario Porphyry Copper-molybdenum Deposit, Collahuasi district, I region, Chile[J]. Economic Geology, 1998, 93: 326-337.

参考文献:

- [1] 芮宗瑶、黄崇轲. 中国斑岩铜(钼)矿床[M]. 北京:地质出版 社, 1984.
- [2] 王钟, 邵孟林. 隐伏有色金属矿床综合找矿模型[M]. 北京: 地 质出版社, 1996.
- [3] 加拿大地质调查所.锡矿床成因模式和找矿标志[J].矿产地 质,1984,8(4):31-37.
- [4] 裴荣富. 中国矿床模式[M]. 北京: 地质出版社, 1994.
- [5] 曲晓明,侯增谦,唐绍华.义敦岛弧带弧后区板内岩浆作用的时代及意义[J].岩石矿物学杂志,2003,22(2):13-137.

THE RESEARCH OF GEOCHEMISTRY CHARACTER AND ORE SEARCHING MODEL FOR HONGZHUO PORPHYRY COPPER DEPOSIT CHEN Xu¹, LI You-guo², REN Guang-ming², ZHANG Mei-mei¹

(1. chengduuniversity of technology environment and civil engineering college, Chengdu 610059, china;
2. Chengdu university of technology earth science college, Chengdu 610059, china)

Abstract: Hongzhuo area is a prospect for porphyre copper deposits. Geochemical characteristics of rock bodies in the study area imply that copper deposit here is of island arc type porphyre copper deposit. The ore-host rock body is characteristic of crust-mantle mixed rock. Through researches on porphyre rock body, alteration zoning and ore indicators and the ore-searching model are established in the area.

Key Words: Hongzhuo porphyry copper deposit; Yidun island arc ; deposit geochemistry; ore-searching model; Sichuan province

欢迎订阅 2008 年《地质找矿论丛》

《地质找矿论丛》为国家科技部和新闻出版总署批准,由中钢集团天津地质研究院主办的地学科技期刊,于1986年创刊, 国内外公开发行。中国标准刊号: ISSN 1001-1412, CN 12-1131/P。

《地质找矿论丛》作为中国科技核心期刊,被美国《化学文摘》(CA)、俄罗斯《文摘杂志》、《中国学术期刊文摘(中文版)》和 《中国学术期刊文摘(英文版)》等国内外著名文摘刊物收录,是《中国科技论文统计》、《中国学术期刊综合评价数据库》和《中 国科学引文数据库》的来源期刊,期刊同时全文入编《中国学术期刊(光盘版)》、《中国期刊网》、《万方数据系统科技期刊群》、 《中文科技期刊数据库》和《华艺 CEPS 中文电子期刊》等电子出版物和数据库,以多种媒体方式向读者提供服务。

《地质找矿论丛》主要报道矿产成矿理论与成矿预测、物质成分及综合利用、矿产地质勘查新技术新方法及其应用、地学 信息技术、水文地质与工程地质、环境地质调查与治理、资源勘查工程、矿产品深加工技术、地质矿产技术经济等方面的科研 成果、进展评介、研究简报,并不断开拓报道领域与深度。

《地质找矿论丛》面向从事地质科研、矿产勘查、矿山企业、矿产品开发的科技人员和地学院校师生。热忱欢迎地矿行业、 地学院校、文献信息部门的单位和个人踊跃订阅并投稿。

《地质找矿论丛》为季刊;每期 80 页, A 4(297 mm 210 mm) 开本, 每季度末月 25 日出版; 每期定价 10 元, 全年共计 40 元。 订阅办法:

(1)向《地质找矿论丛》编辑部函索订单订阅。

编辑部地址:天津市河东区友爱东道平房 4号,中钢地质院《地质找矿论丛》编辑部 邮政编码: 300181

电话: 022-84283083 联系人: 王书辉 E-mail: luncong@163.com; luncong@yeah.net

(2) 通过 全国非邮发报刊联合发行部 订阅。

地址: 天津市大寺泉集北里别墅 17 号 全国非邮发报刊联合发行部 邮政编码: 300385

电话: 022-23973378; 23962479 传真: 022-23973378 E- mail: LHZD@ public. tpt. tj. cn 网址: www. LHZD. com