甘肃祁宝钨钼矿床地球化学特征及找矿方向

智 垄

(甘肃有色地质勘查局四队,甘肃张掖 734012)

摘 要: 祁宝钨钼矿床矿化受岩性控制,钨矿化主要与夕卡岩有关,钼矿化主要与花岗岩及其岩 脉有关:该矿床钨钼元素具有明显的分带性:在水平方向上,以岩体为中心,由内向外钨含量由低 高 低,钼含量由高 低;在垂直方向上,钨含量由低 高 低,钼含量由低 高;根据该矿床钨 钼元素的平向变化规律与垂向变化规律. 推测该矿床西北角中部和深部夕卡岩及其夕卡岩化角闪 云母片岩是今后找钨的首选地段、中部深部花岗岩体及其两侧花岗岩脉是今后找钼的首选地段。 建议在地质找矿工作中,对祁宝矿床西北角中部和深部夕卡岩及夕卡岩化角闪云母片岩、中部花 岗岩体及两侧花岗岩脉进行工程验证和控制,以期发现富大钨、钼矿体。

关键词: 地球化学特征:找矿方向: 祁宝钨钼矿床:甘肃省

中图分类号: P613: P618.6 文献标识码: A 文章编号: 1001-1412(2005)040276-05

矿床地质概况 1

祁宝钨钼矿床位于甘肃省肃南县祁青乡小柳沟 矿区。大地构造位置属朱龙关裂谷带中部朱龙关背 斜北翼。出露地层为长城系朱龙关群上岩组中岩 段^[1]. 主要岩性有灰岩、绢英石英千枚岩、绿泥石英 千枚岩、角闪云母片岩、夕卡岩化角闪云母片岩、夕 卡岩、石英岩、在矿区中部有一花岗岩体出露(图1)。

区内断裂较发育,祁宝钨钼矿床受小柳沟矿区 的龙阿过龙穹窿构造控制。

区内围岩蚀变较发育.主要有夕卡岩化、硅化、 碳酸盐化、透辉石化、透闪石化、绿泥石化、绿帘石 化、绢云母化^[2]:围岩蚀变具有明显的分带性,以钨 矿体为中心向外依次为夕卡岩化 硅化 透辉石 化、诱闪石化 绿泥石化、绿帘石化 碳酸盐化 绢 云母化^[3]。

矿体主要受岩性控制,钨矿体主要与夕卡岩、夕 卡岩化灰岩、夕卡岩化角闪云母片岩有关,钼矿体主 要与花岗岩体及其两侧花岗岩脉有关,少部分钨、钼 矿化与石英脉关系较为密切。

迄今为止,祁宝矿床主要的钨矿体(白钨矿)有5 条(表1), 钼矿体(辉钼矿) 有2条; 钨矿体产于层状、 似层状灰绿色夕卡岩中,白钨矿呈星点状,细脉状分 布于夕卡岩中;辉钼矿产于花岗岩脉及其岩脉两侧 夕卡岩中,在花岗岩脉中辉钼矿呈星点状分布,在夕 卡岩中辉钼矿呈浸染状、细脉状分布。

	Table 1 Ore body characteristics in Qibao W-Mo deposit											
钨矿体编号	长度(m)	平均厚度(m)	$w(WO_3)/\%$	矿体产状	特征							
1	250	14.91	0. 282	30 62								
2	463	8.07	0. 263	40 71	白钨矿呈星点状,细							
3	387	12.95	0. 378	45 68	脉状分布于层状、似							
4	324	4.28	0. 441	45 71	层状矽卡岩中。							
5	132	4. 56	0. 184	43 66								

表1 祁宝矿床钨矿体特征

收稿日期:2005-05-11; 修订日期: 2005-07-20

基金项目:中国地质调查局地质调查项目(编号:70401210172)资助。

作者简介:龚智(1968),男(仡佬族),贵州石阡人,工程师,主要从事地球化学普查与找矿工作。

图 1 祁宝钨钼矿床地质简图 (据甘肃有色地质勘查局四队,2004)

Fig. 1 Geological sketch of Qibao W-Mo deposit 1. 第四系冲积物、坡积物 2. 灰岩 3. 绢英石英千枚岩 4. 绿泥 石英千枚岩 5. 角闪云母片岩 6. 夕卡岩化角闪云母片岩 7. 夕 卡岩 8. 花岗岩体及其岩脉 9. 断层 10. 钨矿体 11. 剖面线号

矿床地球化学特征

2.1 钨钼在地表各类岩石中分布分配特征

2001~2004年,甘肃有色地质勘查局四队在祁 宝矿床 0线、8线、16线、24线、32线(图1)开展了地 表剖面原生晕地球化学工作,对不同剖面线上的不 同岩性采集了光谱原生晕样品,其样品分析统计结 果见表 2。

根据表 2 可知: 钨丰度在夕卡岩中最高, 钼丰度 在花岗岩中最高; 说明钨矿化主要与夕卡岩有关, 钼 矿化主要与花岗岩有关; 在石英脉中钨钼丰度相对 较高, 说明钨钼矿化与石英脉关系较为密切。在地 表从 0 线、8 线 16 线 24 线、32 线, 夕卡岩中钨的 丰度由高 低 高, 花岗岩中钼的丰度由低 高 低, 说明在地表水平方向上, 以岩体为中心(16 线), 由内向外(沿地层走向方向), 钨的丰度由低 高 低, 钼的丰度由高 低, 钨钼元素在水平方向上具有 一定的分带性。

2.2 钨钼在坑道各类岩石中分布分配特征

2002~2003年,在祁宝矿床 3263中段0线、8线 分别施工坑道CM01和CM81,并对坑道内不同岩性 采集光谱原生晕样品,其样品分析统计结果见表3。

根据表 3 可知: 钨丰度在夕卡岩中最高, 钼丰度 在花岗岩中最高; 在 3263 中段, 沿地层走向从 8 线 0线, 夕卡岩中钨丰度由低 高, 花岗岩中钼丰度

表 2 祁宝矿床钨钼元素在地表剖面分布分配特征

ſable 2	W.	Mo	dist ribution	characteristics	along	surface	section	in	Qibao V	V—М с	deposit	$t = w_{\rm B} / 10^{-6}$
	••••	111 0	chot in the cition	onunderenterior	arong	ounaco	00001011		Y mouto i		acpost	· · · · · · · · · · · · · · · · · · ·

<u>н</u>	0线				8线			16 线			8线		32 线		
石	样数	W	Mo	样数	W	Mo	样数	W	Mo	样数	W	Mo	样数	W	Mo
灰岩	1	20.3	0.1	3	17.3	0.3	3	11.5	2.3	2	16.3	1.2	4	1.9	0.5
绿泥石英千枚岩	2	19.7	0.8	2	12.8	1.2	2	6.8	4.2	2	8.1	1.7	1	4.3	0.4
绢英石英千枚岩	2	18.2	1.1	1	6.4	1.5	3	3.1	6.7	3	5.4	2.3	3	6.7	6.7
石英脉	1	86.6	42.6	1	17.7	89.9	2	36.2	91.2	2	23.5	56.8	1	2.6	3.2
矽卡岩	6	163.8	0.3	4	141.5	0.7	3	83.6	2.5	5	96.7	1.8	6	109.4	1.0
角闪云母片岩	2	38.3	18.5	4	11.0	11.1	5	8.6	36.3	5	16.2	12. 1	2	19.7	0.4
花岗岩	2	24. 1	32.7	3	8.6	72.4	4	5.4	96.5	2	11.6	70.3	1	11.7	0.5
平均值	16	79.4	9.4	18	44.5	22.3	22	20. 2	36.0	21	32.8	16.0	18	41.2	4.6

测试单位:有色桂林矿产地质测试中心分析(2001~2004年)。

表 3 祁宝矿床钨钼元素在坑道分布分配特征

Table 3 W, M o distribution characteristics in adits

w B/ 10⁻⁶

工程	标高	标高 绢英石英千枚岩 角闪云母片岩		岩	夕卡岩 花岗岩			石英脉			破碎带								
编号	(m)	样数	W	Mo	样数	W	M o	样数	W	Mo	样数	W	Mo	样数	W	Mo	样数	W	Mo
CM & 1	3263	6	132.8	65.6	80	50.0	14.1	43	285.9	53.5	9	136.7	93.6	9	33.6	78.1	2	185.2	29.7
СМ Ө 1	3263	12	10.6	52.9	13	158.0	70.2	68	590.1	49.9	13	81.2	91.3	2	152.3	53.6	3	333.0	45.7

测试单位:有色桂林矿产地质测试中心(2002~2003年)。

由高 低; 说明以岩体为中心, 沿地层走向, 钨钼元 素在水平方向上具有一定的分带性。

2.3 钨钼在钻孔各类岩石中分布分配特征

2003~2004年,在祁宝矿床3263中段0线坑道 CM 0-1内、8线坑道 CM 8-1内分别施工钻孔ZK 0-1 和ZK 8-1,对钻孔内不同岩性采集光谱原生晕样品, 其样品分析统计结果见表4。

表 4 钨钼元素在 ZK 8 1 分布分配特征

Table 4 W, Mo distritution charcateristics in ZK8-1

岩	性	标高(m)	样数	W	Mo
绢云石英	兵千枚岩	3263~ 3198	33	32.4	21.52
夕卡	岩	3198~ 3124	39	115.8	44.17
角闪云	母片岩	3124~ 3082	25	82.5	86.36
花岗	岩	3082~ 3042	29	43.6	107. 25

测试单位:有色桂林矿产地质测试中心(2003~2004年)。

根据表 4 可知: 在 ZK & 1 号钻孔中, 随着钻孔深 度的递增与岩性的变化, 钨的丰度变化由低 高 低, 在夕卡岩中最高; 钼的丰度变化由低 高, 在花 岗岩中最高。说明在 ZK & 1 孔中, 随着钻孔深度的 递增与岩性的变化, 钨钼元素在垂向上具有一定的 分带性。

Table 5 W, Mo distritution characteristics in ZKO-1

 $w_{\rm B}/10^{-6}$

w_B/ 10⁻⁶

岩性	标高(m)	样数	W	Mo
绢云石英千枚岩	3263~ 3211	24	61.72	26.11
角闪云母片岩	3211~ 3132	37	109.99	30.71
花岗岩	3132~ 3114	11	57.72	60.08
矽卡岩	3144~ 2791	168	193.67	30.65
灰岩	2791~ 2728	34	85.57	16.17

测试单位:有色桂林矿产地质测试中心(2003~2004年)。

根据表 5 可知: 在 ZK 0-1 号钻孔中, 随着钻孔深 度的递增与岩性的变化, 钨的丰度变化由低 高 低,在夕卡岩中最高;钼的丰度由低 高 低,在花 岗岩中最高。说明在 ZK0-1 孔中,随着钻孔深度的 递增与岩性的变化,钨钼元素在垂向上具有一定的 分带性。

根据祁宝矿床钨钼元素在地表、坑道、钻孔的空间分布分配特征,证明钨在坑道 CM 0-1 夕卡岩中丰度最高,钼在钻孔 ZK 8-1 花岗岩中丰度最高,并且具有各自的分带性。

2.4 钨钼元素的平向变化性与垂向变化性

2.4.1 钨钼元素的平向变化性

表 6 钨钼在地表剖面分布分配特征

Table	6	W.	Mo	dist ribution	characteris	stics
1 and	0	** •	THT U	ustinution	unanactor	51100

	along surfa	ce section	$w_{\rm B}/10^{-6}$		
剖面线号	样数	W	Мо		
0线	16	79.4	9.4		
8线	18	44.5	22.3		
16线	22	20. 2	36.0		
24 线	21	32.8	16.0		
32 线	18	41.2	4.6		

测试单位:有色桂林矿产地质测试中心(2001~2004年)。

along surface section

根据表 6、图 2,结合图 1 中岩性分布特点,可得 出在水平方向以岩体为中心,由内带 中带 外带, 钨的丰度由低 高 低,钼的丰度由高 低。 工程号

8线 CM 8-1

ZK8-1

2.4.2 钨钼元素的垂直分带性

(1) 钨钼元素在8线的垂直分带性。根据表6、 图 3 和图 4 可得出: 在祁宝矿床 8 线夕卡岩和花岗 岩中,随着标高的降低,从地表 坑道 钻孔,钨丰 度由低 低,在坑道夕卡岩中最高;钼丰度由低 高 高,在钻孔花岗岩中最高。

29

48.2

表 7 祁宝矿床钨钼元素在 8线分布分配特征

Tabl	e7 W, M	l o distributio	n character	istics along line	8		$w_{\rm B}/10^{-6}$			
	夕卡岩 花岗岩 花岗岩									
标高(m)	样数	W	Mo	标高(m)	样数	W	Мо			
3357~ 3367	4	141.5	0.72	3367~ 3368	3	8.6	72.35			
3263	7	465.6	75.28	3263	9	136.7	93.62			

3123~ 3198 测试单位: 有色金属桂林矿产地质测试中心(2001~2004年)。

19

表 8 祁宝矿床钨钼元素在 0线分布分配特征

231.2

Table 8 W, Mo distribution characteristics along line 0

88.46

3042~ 3082

w B/ 10⁻⁶

107.15

		タ-	卡岩			花岗岩				
上框写	标高(m)	样数	W	Mo	标高(m)	样数	W	Mo		
0线	3350~ 3375	6	163.8	0.30	3358~ 3365	2	24.1	32.7		
СМ 0-1	3263	7	618.3	28.58	3263	13	81.2	91.28		
ZK0-1	3030~ 3114	43	310. 5	31.88	3114~ 3132	11	57.7	60.08		

测试单位:有色金属桂林矿产地质测试中心(2001~2004年)。

图 3 钨钼元素在 8线夕卡岩中分布图

Fig. 3 W, Mo distribution in skarn

图 5 钨钼元素在 0 线夕卡岩中分布图

(2) 钨钼元素在 0 线的垂向变化性。根据表 8. 图 5 和图 6 可见: 在祁宝矿床 0 线夕卡岩和花岗岩 中,随着标高的降低,从地表 坑道 钻孔,钨的丰 根据钨钼元素在地表、坑道、钻孔不同岩性中的 空间分布分配特征,结合钨钼元素的平向变化与垂 向变化性,可得出:以岩体(16线)为中心,在平向上 由内向外(沿地层走向方向),钨的丰度由低 中 高,钼的丰度由高 中 低;在垂向上,钨的丰度由 低 高 低,在坑道 CM 0-1(3263 中段)夕卡岩中最 高,钼的丰度由低 高,在钻孔 ZK 8-1 花岗岩体中最 高。

3 找矿方向

根据祁宝矿床钨钼元素在地表、坑道、钻孔不同 岩性中的空间分布分配特征及其变化规律,结合矿 床的岩性分布特点,推测矿床西北角深部夕卡岩及 夕卡岩化角闪云母片岩是今后钨矿找矿的首选地 段; 推测矿床中部深部花岗岩体及其两侧花岗岩脉 是钼矿找矿的首选地段。

建议在地质找矿工作中, 坑探工程与钻探工程 相结合, 对祁宝矿床西北角 24 线、32 线中部和深部 夕卡岩及夕卡岩化角闪岩母片岩进行深部工程验证 和控制, 以期发现富大钨矿体; 对祁宝矿床中部 16 线花岗岩体及其两侧花岗岩脉进行深部工程验证和 控制, 以期发现富大钼矿体。

参考文献:

- [1] 周廷贵,周继强,宋史纲.小柳沟铜钨矿田矿化特征及找矿方向
 [J].地质与勘探,2002,38(2):37-41.
- [2] 周廷贵,周继强.甘肃小柳沟铜钨多金属矿床地质地球化学特征[J].桂林工学院学报,2000,20(2):132-136.
- [3] 周宏. 甘肃省小柳沟钨矿区成矿流体特征[J]. 地质找矿论丛, 2004, 19(2): 110-113.

GEOCHEMICAL CHARACTERISTICS AND ORE SERACHING DIRECTIONS IN QIBAO W-Mo DEPOSIT GONG Zhi

(No. 4 Group of Non-ferro metal Geological Prospecting Bureau in Gansu, Zhangye 734012, China)

Abstract: Qibao W-Mo deposit is controled by lithology. W mineralization is closely related to skarn, Mo to granite and related dykes. W, Mo in the deposit show strong zonation. Horizontally W distribution is characterized by low high Low from the center of the whole rock body to the outside and Mo by high low; vertically W by low high low, Mo by low high. Based on the distribution pattern we postulate the medium-deep skarn and skarnized hornblend-mica schist in northwest corner of the deposit to be the target for W ore and the medium-aeep granite and related dykes on the either sides for Mo ore and propose to layout workings at the targets.

Key words: geochemical characteristics; ore searching direction; Qibao W-Mo ore deposit; Gansu provice