烃类物质微渗漏机制及垂向运移的数值模拟

肖 伟¹,鲍征宇²,黎 华²,李方林²

(1. 中国科学院 地质与地球物理研究所, 北京 100029;

2. 中国地质大学(武汉) 计算地球化学实验室, 湖北 武汉 430074)

摘要:在前人烃类物质微渗漏机制研究基础上,建立了烃类物质微渗漏的概念模型,并且推导了烃类物质垂向运移的动力学模型。在动力学模型的基础上,通过数值模拟验证了烃类物质胶体
 气泡上升机制的合理性,并计算了不同情况下烃类物质垂向运移的平衡时间,进一步验证了烃类物质气泡上升机制满足运移速度快、流量少的特点。
 关键词: 烃类物质;微渗漏;垂向运移;动力学模型;数值模拟

中图分类号: P593 文献标识码: A 文章编号:100+1412(2003)0+0029-05

烃类物质微渗漏机制及垂向运移的研究是油气 化探领域中一个基础而又非常重要的研究内容,其 对于油气藏的勘探非常重要。国内外早期的油气勘 探主要是以肉眼可见的烃类渗漏(宏渗漏)的地表显 示——"油苗"作为地下存在油气的指示。20世纪 初,人们通过大量油气田上方的地球化学测量结果 得知,油气田普遍存在烃类的微渗漏现象。烃类组 分之间在纵向上的不均衡性正是由于微渗漏而引起 烃类组分垂向运移的证据,其主要表现有^[2]:

(1)轻烷烃组分的变化。 φ(C₂₊)/φ(C₁)值随 深度的变浅而逐渐降低,说明浅层比深层更富含轻的组分,这是因为在运移过程中,烃气轻重组分的扩 散能力、被吸附能力不同以及重力分异等的影响,烃 气出现分馏效应。

(2) Φ(iC₄)/Φ(nC₄)值的变化。在烃类自油气 藏向上运移的过程中,由于分异效应的影响,同碳数 正构烷烃与异构烷烃会在空间区域上发生分异。一 般认为,在致密岩层空间内,轻烃运移以扩散方式为 主,自下而上异构比呈现降低的趋势;而在疏松的岩 层空间内,轻烃运移以渗透方式为主,自下而上异构 比逐渐增大。

(3)不同波长段的芳烃荧光强度显著降低。

(4) 深部油气藏与地表的甲烷碳同位素值基本 一致。并且已经基本确认油气微渗漏具有如下特点^[3]:①油气微渗漏普遍存在于各类的油气藏中;② 烃类物质及伴随物沿垂直方向向地表逸散,即烃类 物质发生垂向运移;③在垂向通道上会产生"色层效 应";④微渗漏强度与油气藏的含量呈正比例关系; ⑤地面微渗漏测量的结果与油气藏组分的谱结构具 有相似性;⑥油气垂向微运移具有阶段性和间歇性 特点,在化探指标柱状图上,地化指标常出现多个由 高[→]低或由低[→]高的旋回。

20世纪40年代以来,前苏联、德、美等国开展了 以直接检测油气藏烃类微渗漏为主的地表地球化学 方法研究和应用,确立了一系列低成本的油气检测 方法、如蚀变碳酸盐测量、土壤荧光测量、钾钒吸附 丝测量、航空遥感化探等。20世纪中叶,许多科学家 就开始研究烃类物质的微渗漏机制及其运移的形 式。1969年, MacElVain^[4]最先提出了油气胶体微 气泡运移模型; 1986年, Price 修改了 MacElVain 的 模型,提出了油气胶体微气泡通过微断裂的运移模 型,这种运移模型被人们普遍肯定和接受。该运移 模型认为, 烃类气体呈胶粒气泡形式, 在浮力作用下 以布朗运动方式沿着油气藏上覆岩层充满水的、相 互连通的"微裂隙"网络向地表迁移。Saeed(1991), Arp(1992), Klusman(1993, 1994)^[3]先后用达西定律 论证支持了这一学说。WenBaihong 和 Putikov^[5]从 物理化学实验和数学模拟的角度证实了这种运移机 制的可行性。目前, 烃类物质微渗漏机制理论体系 已经基本成熟了。

尽管微气泡上升机制被广泛地接受和引用,但 是它的定量特征仍然没有在理论上进行研究。甚至

作者简介:肖伟(198+),男,湖北仙桃人,中国科学院地质与地球物理研究所在读硕士研究生,主要从事地球化学研究。

收稿日期: 2002-06-26; 修订日期: 2003-02-24

MacElVain 的研究只是完全停留在定性上,没有更 多在流量和流速方面的定量研究,这种机制是否合 理和在某种程度上断裂对于这个渗漏过程是否是必 要的都是不清晰的。如果断裂作为油气运移的通道 是必要的,则地球化学异常可能是断裂的指示,而不 是深部油气藏的指示。如果断裂足够大,地表的微 渗漏则可能是由于在运输层里油气的渗漏而引起 的,也可能由于在油气藏凹陷区油气的渗漏而引起 的。如果微断裂穿透了油藏区的密封层,一定的地 质时间后凹陷区是否还存在油气呢?这些问题都没 有被解决。

这些问题的解决需要定量化地研究烃类物质运 移的速度和平衡时间。本文拟通过建立烃类物质垂 向运移的动力学模型来定量化地研究烃类物质运移 的速度和运移的平衡时间,从而弥补烃类物质微渗 漏研究的空白。

烃类物质垂直运移动力学模型的建 立

油气在地下的运移方式有3种^[6]:首先是油气 通过地下岩石的裂缝、孔隙等从高压区向低压区移动,这种运移叫做渗透;其次是油气的分子从高浓度 区向低浓度区移动,这种运移叫做扩散;第三,油气 和水相比,由于相对密度较小,总是向着水的上部浮 起,直至水的顶面,这种运移方式叫做浮游。

通过上述对烃类物质微渗漏机制的研究,我们 可以知道烃类物质运移方式以浮游为主,其次是扩 散,因此我们可以得到烃类物质垂直运移的概念模 型——胶体微气泡浮游扩散模型,即在模型中主要 考虑胶体气泡浮游运移机制,其次考虑扩散机制对 烃类物质运移的影响,最后考虑地下水对烃类物质 垂向运移的影响。

油气的密度比水小,在水中产生浮力,这种浮力 是推动油气在成藏动力系统中运动的基本动力之 一。在烃类物质垂向运移过程中,浮力作为主要的 动力。烃类物质微气泡所受的浮力可以表示为:

$$F = V(\rho_{\rm W} - \rho_{\rm C}) g$$

式中, F 为浮力, ρ_w , ρ_c 分别为孔隙流体和烃类物质 气胶囊的密度, V 为烃类物质的气泡的体积。因为 饱和度不能控制微气泡的上升, 所以对于非连续气 相的气体没有关于饱和度的相对渗透率函数, 因此 达西定律不能应用于微气泡的上升。考虑控制微气 泡上升速度的不同因素, 微气泡的上升速度是可以 估算的。这些控制因素主要为^[1]: ①油气胶体球体 和周围液体的性质; ②盖层岩石的影响; ③气泡上升时聚集的程度。在刻划烃类物质上升机制的过程中,为了简化计算,我们将微气泡的运动视为匀速上升的,根据文献[1]可得其 Stokes 速度为:

$$u = 2a^2 \frac{\rho_{\rm W} - \rho_{\rm C}}{9\mu}g$$

其中 a 为油气胶体微粒的半径, P_w 和 P_c 分别为孔 隙流体和气胶囊的密度, μ 是气胶囊通过流体(水) 时的运动粘度。如果考虑微裂隙壁、组分浓度的影 响, 以及裂隙中连续气相流体的情况, 那么公式还需 做出修改。

烃类物质在垂直运移的过程中, 微生物对其有 降解作用。微生物适应性很强^[2], 能在地下深处到 地表广泛发育。地表的微生物活动最为强烈, 因此 烃类物质垂直运移到地表时浓度会大大降低。由于 微生物的活动受许多因素的影响, 例如湿度、营养 度、温度等, 为了简化计算, 本文简单地假设微生物 对某个烃类物质的降解为一级降解, 其降解速率为 烃类物质浓度的常数倍。即:

$$U_1 = \mathbf{k}_1 c$$

式中 U_1 为微生物降解速率,c为某个烃类物质的浓 \mathbf{g} , k_1 为常数。

烃类物质在垂向运移到地表的过程中,上覆岩 层和地表土壤对其有吸附作用,吸附作用一般发生 在上覆岩层和地表土壤的表面。1909年弗里得里希 建立了一个等温吸附方程,其形式如下:

$$q = \mathbf{k} x^{1/n}$$

式中 q 为单位吸附剂的吸附量, x 为压力(或者浓 度), k, n 是与温度有关的经验常数。如果考虑温度 的情况下, k 一般是温度的幂函数, 而 1/n 则表现为 温度的多项式形式。因为酸解烃以吸附状态存在为 主, 所以可以把酸解烃看作为吸附烃, 其丰度与水溶 烃浓度、温度、岩石的矿物组成以及烃类的组成有 关。1996 年王振平等⁽⁷⁾建立了砂岩和泥岩中酸解 烃背景的数学模型。其砂岩酸解烃背景模型为: $AC_s= 10^{A_0}T^{A_1}R_s^{(B_1+B_2T+B_3T_2)T}$

式中 AC_s 为砂岩的酸解烃的计算值, 单位为 $\mu_1/kg;$ T 为温度; R_s 为水溶烃的浓度; $A_0 = 0.9288955; A_1 = -0.1724824; B_1 = 0.2850305; B_2 = -0.006115168; B_3 = 0.00003668。泥岩的酸解模型$ 为:

$$A C_{m} = aA C_{s}$$

式中 ACm 为泥岩酸解烃的背景值, a 为泥岩中总酸 解烃之比值, 由下式确定:

 $a = a_1 C_1 + a_3 C_{2+3} + a_4 + C_4^+$

*C*₁, *C*₂₊₃, *C*[‡] 分别为酸解烃中甲烷、乙烷+丙烷、丁烷的体积分数。我们假设上覆岩层和地表土 壤颗粒对某种烃类物质吸附作用的总速率 *U*₂ 与土 壤中该类物质组分总的吸附量 *q* 和上覆岩层、地表 土壤表面的烃浓度 *c* 的差成常数倍。即:

$$U_2 = -\mathbf{k}_2 \, \varphi \, (q - c)$$

式中的 φ 为上覆岩层和土壤介质的孔隙度, U_2 为吸 附的总速率。

烃类物质垂直运移的过程中伴随有烃类气体分子的扩散现象,烃类气体分子的扩散受油气浓度梯 度制约,并且服从费克第一定律,在直角坐标系中, 其表达式为:

$$\frac{\partial c}{\partial t} = D_x \frac{\partial^2 c}{\partial x^2} + D_y \frac{\partial^2 c}{\partial y^2} + D_z \frac{\partial^2 c}{\partial z^2}$$

其中 *c* 是任一物质在 直角坐标系 中任一 点上的浓 度, *D* 为 3 个方向上的扩散系数。

根据以上的分析,我们可以建立如下的油气微 渗漏的动力学模型:

$$\frac{\partial(c_1)}{\partial t} = - \nabla \cdot (J_j \overset{\text{pin}}{=} + J_j \overset{\text{frigh}}{=}) + \Psi U_j^{-1} + \Psi U_j^{-2}$$

$$(j = 1, 2, \dots, n)$$

式中 *cj* 是第*j* 种烃类的组分浓度, ⁹ 为上覆岩层和 土壤介质的孔隙度, *Uj*² 是上覆岩层和土壤介质对 第*j* 种烃类的吸附速度, *Uj*¹ 为微生物对第*j* 种烃类 降解速率。从而我们可以得到烃类组分垂向微运移 过程的一维动力学模型:

$$\frac{\partial(c_j)}{\partial t} + u_z \frac{\partial \varphi_{cj}}{\partial z} = D_{jz} \frac{\partial^2 \varphi_{cj}}{\partial z^2} - \varphi_{k_{j1}c_j} - \varphi_{k_{2j}}(q_j - c_j)$$

$$(j = 1, 2, \dots, n)$$

式中 c_j 是第j 种烃类的组分浓度, φ 为上覆岩 层和土壤介质的孔隙度, u_z 为胶体 气泡上升 的速 度。

2 模拟结果与讨论

在模型求解的过程中,我们分别采用了混合有限分析和有限差分方法,并且用C++语言编制了模拟软件。因为不同的烷烃有不同的分子半径和不同的扩散能力,所以在相同的地质背景下,我们分别对乙烷、丙烷和丁烷的第一类边界和第二类边界进行了数值模拟(参数设置见表1)。

表 1 油气参数表 Table 1 Natural gas diffusion prameters

	半径(10 ⁻¹⁰ m)	油气密度(g/cm ³)	油气粘度(m•Pa•s)	扩散系数(cm ² • s)	相对密度	孔隙度	高度(m)
乙烷	4.7	251	0. 02748	0.17	0. 572	0.2477	1500
丙烷	6.3	251	0. 02748	0.14	0.5005	0.2477	1500
丁烷	8.2	251	0. 02748	0.11	0.5788	0.2477	1500

在第一类边界条件下乙烷、丙烷和丁烷运移平 衡时所需的平衡时间见表 2。

表 2 第一类边界运移平衡时间表

```
Table 2 Equilibrium time of the first class
```

marginal condition

	乙烷	丙烷	丁烷
平衡时间(年)	7371	8545	10235

第一类边界条件下,乙烷和丁烷运移1000年的 深度 浓度图见图 1 和图 2。

表 3 第二类边界运移平衡时间表

 $Table \ 3 \quad Equilibrium \ time \ of \ the \ second \ marginal \ condition$

	乙烷	丙烷	丁烷
平衡时间(年)	27517	30959	35852

图1 乙烷运移1000年的深度浓度图

Fig. 1 Depth-concentration plot of ethane during the 1 000 year's migration

图 2 丁烷运移 1 000 年的深度 浓度图 Fig. 2 Depth-concentration plot of butane during the 1 000 year's migration

在第二类边界条件下,各种烷烃运移的平衡时 间见表 3。

第二类边界条件下,乙烷和丁烷运移 10 000 年 的深度-浓度图见图 3 和图 4。

Fig. 3 Depth-concentration plot of ethane during the 10 000 year's migration

从以上的结果中我们可以看出各种轻烷烃通过 一定时间可以垂直运移到地表并且达到平衡。其中 乙烷运移速度较快,达到平衡所需要的时间短,而丁 烷的垂直运移速度较慢,达到平衡所需要的时间长。 这是主要因为乙烷分子的半径较小,容易透过地下

图 4 丁烷运移 10 000 年的深度 浓度图 Fig. 4 Depth-concentration plot of butane during the 10 000 year's migration

岩石和地表土壤的孔隙向上运移,而丁烷分子的半 径较大,不容易透过地下岩石和地表土壤的孔隙向 上运移。其次因为乙烷分子的扩散能力较强,而丁 烷和戊烷的扩散能力相对较弱。

我们在相对孔隙度为 0.05 和 0.2 的情况下,对 烃类物质的垂向运移进行了数值模拟(参数设置见 表 4)。

表 4	烃类物质的垂向运移数值模拟参数
-----	-----------------

Table 4 Simulation parameter of vertical hydrocarbon migration value

半径	油气密度	油气粘度	扩散系数	高度	烃类物质
$(10^{-10}m)$	(g/cm^3)	$(m{{\scriptstyle\bullet}} Pa{\scriptstyle{\scriptstyle\bullet}} s)$	(cm ² s)	(m)	浓度
10	251	0.02748	0.2	1500	0. 72mol/1

第一类边界情况下,达到平衡时的平衡时间见 表 5。

表 5 第一类边界不同孔隙度条件下的 烃类物质运移平衡时间

Table 5 Equilibuium time of hydrocarbon migration at the first class marginal condition with varied poroctity

		•	
相对孔隙度	0.05	0.1	0.2
平衡时间(年)	20637	12825	7667

第二类边界情况下,达到平衡时的平衡时间见 表 6。

表 6 第二类边界和各种孔隙度条件下 的烃类物质运移平衡时间

 Table 6
 Equilibuium time of hydrocarbon migration at the second marginal condition with varied porocity

相对孔隙度	0.05	0.1	0. 2
平衡时间(年)	63572	43175	28386

从上面的数据可以看出,在不同相对孔隙度的 情况下,轻烃类物质都可以通过一定的时间运移到 地表,地表的地球化学异常是深部油气藏的指示,地 表的微渗漏是由于在油气藏凹陷区油气的渗漏而引 起的。但是相对孔隙度影响烃类物质垂向运移的平 衡时间。相对孔隙度越大,烃类物质越容易运移,垂 向运移的平衡时间就越短。

综合上述分析,我们可以认为烃类物质胶体气 泡上升机制是合理的,它可以很好地解释烃类物质 的微渗漏现象,并且烃类物质胶体气泡上升机制满 足运移速度快、流量少这两个特点。

参考文献:

- Alton Brown. Evaluation of possible gas microseepage mechanisms
 [J]. AAPG Bulletin, 2000, 84(11): 1775-1789.
- [2] 赵克斌,孙长青,陈昕华. 烃类垂向微运移及近地表地球化学效 应[J].石油勘探与开发,2000,27,(4):99-101.
- [3] 文百红,林蓓,刘吉敏.油气微渗漏的垂向结构与地面地电化学 油气检测[J].石油勘探与开发,1999,26,(5):33-35.
- [4] MacElVain R. M echanics of gaseous ascension through a sedimentary column[A]. In: Heroy W B. Unconventional methods in exploration for petroleum and natural gas [C]. Dallas: Southerm Methodist University Press, 1969. 15-28.
- [5] Wen Bai hong, Outikov O F. Gas bubble facilitated transport of metals in lithosphere[J]. Transactions of Nonferrous M etals Society of China, 1999, 9(1): 152-157.
- [6] 李鹤庆. 油气垂向运移的形迹[J]. 物探与化探, 1994, 18(6).
- [7] 王振平.油气垂向化探酸解烃异常识别[J].石油勘探与开发, 1996,23(1).

HYDROCARBON MICROSEEPAGE MECHANISM AND NUMERICAL SIMULATION OF VERTICAL MIGRATION XIAO Wei¹, BAO Zheng yu², LI Hua², LI Fang lin²

(1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;

2. The computation geochemistry laboratory of the china university of geosciences, Wuhan 430074, China)

Abstract: After thorough review of hydrocarbon microseepage mechanisms, the paper worked out a concept model of hydrocarbon as well as a dynamic model. In light of the dynamic model, we validated the gas- bubble ascent mechanism. At last we computed the equilibrium time of vertical migration for different kinds of hydrocarbon, and validated that the gas-bubble migration mechanism satisfies both of the rapid vertical velocity and relatively low flux that is required by microseepge phenomena.

Key words: hydrocarbon microseepage; vertical migration; dynamic model; numerical simulation