胶东地区岩浆热液型金矿成矿流体 演化与成矿预测

王铁军1, 阎 方2

(1. 天津地质研究院, 天津 300061; 2. 山东栖霞金斜黄金矿业有限公司, 山东 栖霞 365002)

摘 要: 胶东地区岩浆热液型金矿的成矿作用不是一次完成的,成矿作用的多阶段活动不仅表现在矿石结构构造上,包裹体观测表明,在同一包体片中,甚至在同一石英颗粒上经常见有不同类型的原生包裹体。这表明成矿作用过程中深部上升的富含 CO₂ 热液与断裂内原地水频繁发生混合作用,即成矿流体是多次脉动式注入的。脉动式叠加矿化的找矿意义是成矿场的垂向迁移。即早期金矿化倾向于分布在浅部,随着时间的推移,成矿温度下降,在矿场向深部迁移,矿化深度增加。因此剖面上存在多个矿化富集段,富集段与贫化段相间分布。 关键词: 金矿:岩浆热液:成矿场:应力场:流体包裹体:胶东地区

中图分类号: P611; P618.51 文献标识码: A 文章编号: 1001-1412(2002) 03-0169-06

山东省胶东地区金矿大部分为岩浆热液型金 矿。金矿成矿时代为中生代。金矿成矿作用发生在郭 家岭花岗岩和滦家河花岗岩岩浆作用后期,包括侏 罗纪至白垩纪各类脉岩活动期。晚侏罗世至白垩纪 是胶东地区金矿形成期。

胶东地区金矿为低盐度浅成热液金矿。富集金 属元素最有效的机制是流体从岩浆中分离:熔体-卤 水的分离(包括气相分离)的主要机制是岩浆上升过 程中围压的降低,随着压力的下降,水在岩浆中的溶 解度降低。当水含量超过溶解度时,流体从熔体中分 离。金矿中金的富集系数高达2000~10000,如此高 的富集系数只有岩浆热液能够达到。有关金矿与岩 浆之间的成因联系,不仅在理论方面,还有大量的地 质方面的依据,如金矿与岩浆岩空间和时间上的密 切联系。

研究成矿热液演化包括:①成矿热液成分演化。 ②构造面产状(构造应力场)对矿体的控制与成矿流 体空间分布。③成矿流体多次脉动式注入的证据。④ 成矿场空间上的叠加与迁移。

胶东地区金矿多为中温及中低温热液金矿。各 金矿普遍发育多阶段成矿作用,即: . 早期石英少 黄铁矿阶段; . 黄铁矿石英阶段; . 多金属硫化物 阶段; . 碳酸盐阶段。热液演化的总趋势是: 从早期 到晚期, 热液温度逐渐降低, pH 值逐渐升高。

成矿作用的多阶段活动不仅表现在矿石结构构 造上,包裹体观测表明,即使同一成矿阶段成矿流体 也是多次脉动式注入的。

1 构造对成矿流体空间分布的控制

构造在时间和空间上的发展及其应力场演化直接控制矿体空间分布,构造应力控制着裂隙的闭合与开启。成矿场中流体运移主要营力为构造应力场, 其次为流体内压。在压应力的低值区裂隙容易开启, 成矿流体流量大,带入的矿质多,因而形成富矿体。 而在强挤压部位由于流体内压不足以克服构造面上 正压力,裂隙处于闭合状态,成矿热液流量小,矿质 沉淀量少,形成贫矿带。成矿作用的早期发育绢英岩 化蚀变,并发育糜棱岩化及片理化。早期蚀变矿化对 应的构造应力场为 NW-SE 向挤压。主成矿期主压 应力方向为 NEE-SWW 向挤压,与早期构造应力场 近于正交。构造带内较大的张剪性构造空间将形成 矿柱。矿柱的长轴与矿体的侧伏方向一致,有两种特 殊情况: 一是矿体长轴近水平,二是矿体长轴垂直。

逆冲断层向正断层转化, 应力状态由挤压作用

收稿日期: 2002-03-11; 修订日期: 2002-07-20

作者简介: 王铁军(1963-), 男, 辽宁黑山人, 高级工程师, 硕士, 从事金矿地质和矿物学研究。

向张性作用转变。张性构造环境中压力迅速降低,深 部成矿流体迅速向低压方向运移,在张剪性构造区, 由于流体内压的迅速释放,将导致局部的隐爆和流 体的沸腾,并导致矿质的大量沉淀。

2 脉动式叠加成矿及其地质意义

成矿作用不是一次完成的,断裂构造的多次活动造成成矿作用的叠加与成矿场的空间转移。脉动 式叠加矿化的主要证据有:

(1) 各矿区普遍发育多阶段金矿化。

(2) 多金属矿化阶段的白色石英脉内经常见到 细粒细脉状硫化物脉体穿插。

(3)同一标本上存在细粒脉状多金属硫化物穿 插在较粗粒多金属硫化物中。

(4)多金属硫化物期的石英中即发育原生含二 氧化碳包裹体,同时可见部分含二氧化碳次生包裹体。

(5) 各金矿区黄铁矿和石英发育多世代现象。

(6) 多元素分析表明金及其相关元素在空间分 布上具波浪式分布特点,尤其在剖面上,出现前晕元 素与尾晕元素叠加的现象。

脉动式叠加矿化的找矿意义是成矿场的垂向迁 移。即早期金矿化倾向于分布在浅部,随着时间的推 移,成矿温度下降,成矿场向深部迁移,矿化深度增 加。因此剖面上存在多个矿化富集段,富集段与贫化 段相间分布。

3 石英包裹体特征及其地质意义

石英中流体包裹体的研究是现代金矿研究的重 要方法。

3.1 玲珑金矿

黄铁矿石英脉及黄铁绢英岩中石英有两种(1) 大颗粒石英具波状消光,(2)微晶石英交代大颗粒石 英,石英包裹体大部分拉长微具定向性,据形态及成 分特征划分为四种类型。

型: 含液态 CO₂, CH₄ 包裹体, 呈三相含 CO₂25%~70%, 均一温度 250~345。

型:液态包裹体,气液比 20% ~40%,微具定 向排列与拉长。均一温度 255 ~335 。气液比 15% ~20%,均一温度 165 ~235 。 型: 纯 CO2 包裹体, 较少见, 为原生包裹体。

在同一包体片中,甚至在同一石英颗粒上经常 见有不同类型的原生包裹体。这反映了成矿作用过 程中深部上升的富含 CO₂ 热液与断裂内原地水混 合。矿化流体是多次脉动式注入的。成矿场内局部发 生二氧化碳与水的不混溶。

3.2 金翅岭金矿

金翅岭金矿成矿流体特征:金翅岭金矿石英分 为三类:Q¹为大颗粒石英;Q²为无明显裂隙,后期结 晶石英呈自形半自形,与黄铁矿及多金属硫化物共 生;Q³为细粒—微晶质石英。

同一包体片中,含 CO² 三相流体均一温度略高 于二相包裹体 2~5 。这表明同一成矿阶段成矿系 统内同时存在两种成矿流体,两种成矿流体的形成 只能解释为含 CO² 的矿化流体间歇式脉动注入矿化 裂隙,并与裂隙内已存在的流体混合。深部上升的矿 化流体温度较高,流体运移到成矿场内温度逐渐降 低。热液活动早期温度较高 300~350 ,液态包裹体 气液比为 30%,流体内压为 40~90 M Pa。深部上升 的岩浆热液与深循环的地下水混合,富矿体产出于 两组流体通道的交汇部位。

成矿场内金的沉淀可能受以下地质过程控制:

(1) 成矿场内流体温度的降低;

(2) 硫化物和石英的大量沉淀;

(3) 围岩蚀变尤其是长石的绢云母化过程;

(4) 沸腾(或泡腾) 作用及二氧化碳与水的不混 溶作用;

(5) 深源流体(岩浆热液) 与地表循环水的混合 作用。

4 成矿流体化学成分演化

灵山沟金矿 1 号脉为石英脉型, 5 号脉为细脉浸 染型。矿石类型的不同与构造环境的差异有关。当构 造面压应力较小时,流体内压克服外压使构造面张 开,形成石英脉型矿石。当构造面正压应力较大时, 流体内压不足以克服压应力,成矿流体只能以渗流 方式运移或在主构造面附近形成局部构造张裂隙, 形成细脉浸染型矿石。

灵山沟金矿成矿热液属低盐度的 H₂O-NaCl-CO₂-H₂S 体系。SO²⁻-HCO₃-CO₂ 三角图解(图1)中 蚀变岩与各成矿阶段流体演化呈直线,表明各成矿 阶段热液是同源演化的。流体演化过程中硫浓度逐 渐降低,热液由酸性向中性演化。

伟晶岩落在直线外,伟晶岩形成于金的成矿作 用之前。伟晶岩期后热液硫浓度较低,二氧化碳含量 偏低。这表明灵山沟金矿成矿热液晚于玲珑花岗岩 及伟晶岩化,金矿化与伟晶岩及花岗岩没有成因联 系。

K²O-Na²O-CaO 三角图解(图 2)也表明伟晶岩 期热液与成矿期热液不同。

		-			-	-			
庆 日	生生	K ⁺	${ m N}{ m a}^+$	Ca ²⁺	$HCO_{\overline{3}}$	SO_4^{2-}	Cl⁻	CO 2	H ₂ O
17 5	白庄		w _B × 10 ⁻⁶						
1	钾长伟晶岩	2.19	3.99	12.82	38.65	6.57	4.33	10.54	834.1
2	钾化花岗岩	3.81	8.9	52.66	19.01	158.27	8.2	50.74	809.6
3	绢英岩	8.26	4.92	15.11	40.55	25.43	2.76	29.66	1132.2
4	黄铁石英脉	1.69	3.83	21.83	28.67	46.71	3.74	30.97	999.2
5	多金属石英	5.37	3.91	16.16	37.07	18.2	2.43	39.54	1018.1
6	方解石石英	1.29	4.24	35.36	33.26	54.16	3. 48	34.27	852.5

表 1 灵山沟金矿石英包裹体化学成分分析 Table 1 Analysis of fluid inclusion of quartz from Lingshangou gold mine

图 1 灵山沟金矿流体包裹体 SO₄² -HCO₃ -CO₂ 三角图解

Fig. 1 SO_4^2 -HCO₃ -CO₂ Plot of fluid inclusion from Lingshangou Aumine K2O-Na2O-CaO 三角图解 Fig. 2 K2O-Na2O-CaO Plot of fluid inclusion from Lingshangou Au mine

$\overline{\alpha}_{2}$ 与现几曲V 区口 央巴委体成刀刀 \overline{m}_{1} W P \overline{m}_{2}	表 2	玲珑九曲矿区石英包裹体成分分析	(w _B /	10^{-}	6)
--	-----	-----------------	-------------------	----------	----

m 11 7	A 1 ·	C C1 · 1		•		T'	1 .	T · 1	1 1	1 .
I able 4	Analysis	of thud	inclusion	m	miartz trom	man	domain.	$1.10 \sigma \log n \sigma$	ൗവിറ	imme
1 4010	1111a1 y 5 15	or mana	monuoion		quartz 110m	Juqu	do mam?	111510115	5010	i mi mi c

样号	К	Na	Ca	Fe^{2+}	HCO3	C1-	SO4 ²⁻	CH_4	CO_2	H_2O
L 04	1.71	5.12	0.06	0.36		0.36	11.6	5.1	2700	6641
L16	0.78	1.13	0. 29	0.15	3.98	0.33	4.67	5.6	720	5599
L 24	6.31	5.14	0. 22	0.5		0.57	13.3	11	1927	6926
L 07	3.32	4.84	0. 03	0.15		0.29	8.33	8.1	2932	7938
L13	1.07	1.32	0.06	0.08	3.27	0.36	4.0	5.9	2785	7100
L 32	1.17	3.3	0.02	0.15		0.17	8.67	3.0	2275	4019
95–5	1.63	4.32	0.04	0.22		0.26	9.17	5.3	3257	6878
95-4	2.21	1.81	0.04	0.02	4.2	0.19	4.17	4.1	1668	4210
95–7	2.33	4.55	1.2	0.1	5.42	0.29	8.5	8.5	2256	6889
71–7	1.12	3.6	0.01	0.16		0.26	7.5	4.8	2328	6241

表 3 黑岚沟金矿矿区石英包裹体成分分析(w_B/10⁻⁶)

Table 3 Analysis of fluid inclusion in quartz from Heilangou gold deposit

样号	K	Na	Ca	C u ²⁺	Zn^{2+}	C1-	$\mathrm{SO}_4{}^{2-}$	CH4	CO 2	H 2O
A 2	9.38	25.3	0.06	0.02	0.3	17.9	38.0	0.009	2700	6641
A2- 9	5.03	15.8	0.03	0.03	0.5	24.9	5.66	0.008	720	5599
4-2	5.7	23.7	0.03	0.17	0.4	41.8	1.11	0.006	1927	6926
17- 1	6.41	10.2	0.04	0.03	0.2	10.9	14.6	0.015	2932	7938
2-2	3.75	6.41	0.03	0.03	0.4	3.84	11.2	0.063	2785	7100
B3- 18	6.31	12.8	0.06	0.01	0.2	17.0	9.09	0.081	2275	4019

5 硫同位素特征与成矿流体来源

氧、氢、碳及硫同位素研究指出: 招掖地区金矿 成矿物质来源与花岗岩及脉岩关系密切。成矿作用 早期岩浆水所占比重较大, 成矿作用后期有大量地 表水加入^[3]。招掖地区金矿硫同位素以富δ(³⁴S)为特 征。δ(³⁴S)变化范围较窄且正向偏离陨石值, 表明硫 的来源比较均一。硫及相关成矿物质来源于晚侏罗 世~白垩纪岩浆热液。

表 4 招掖金矿带硫同位素特征

Table 4 S-isotope characteristics of Zhaoye Au ore belt

	++ ***	Ċ		
10 床	件面釵	均值	范围	极差
玲珑	75	+ 6.7	+ 4.9~+ 8.5	3.6
黄埠岭	22	+ 7.8	+ 7.0~+ 8.8	1.8
灵山沟	10	+ 7.4	+ 6.4~+ 8.8	2.4
夏甸	5	+ 7.62	+ 7.4~+ 8.0	0.6
新城	18	+ 9.76	+ 7.9~+ 10.7	2.8
焦家	10	+ 10.2	+ 8.7~+ 11.84	3.14
三山岛	7	+ 12.2	+ 11.0~+ 12.6	1.6
金翅岭	2	+ 4.75	+ 4.7~+ 4.8	0.1
十里铺	1	+ 4.7	+ 4.7	
黑岚沟	10	+ 6.25	+ 4.2~+ 8.7	4.5
胶东群		+ 7.5	+ 7.0~+ 8.0	1.0
郭家岭花岗岩		+ 6.68	+ 2.7~+ 10.0	7.3

金翅岭金矿矿石结构表明黄铁矿结晶早于闪锌 矿, 根据包裹体成分分析的计算结果, 成矿期流体内 的硫以 H₂S 为主, SO²⁻ 含量微, 在 150 ~ 300 温度 范围内, 黄铁矿 δ ³⁴S) 基本代表了热液 δ (³⁴S)。

十里铺银矿闪锌矿 δ (³⁴S) 变化范围 – 2.12× 10⁻³ ~ - 4.6×10⁻³。导致闪锌矿 δ (³⁴S) 下降的原因 可能是多金属阶段热液 $f(O_2)$ 升高, 导致 H₂S-SO²-转变。SO²- 富集重硫, 例如 250 条件下 δ ³⁴Sso²-)- δ (³⁴SH₂) 为+ 26.5, 热液中 4% 的 H₂S 转变为 SO²-则闪锌矿 δ (³⁴S) 下降约1×10⁻³(金翅岭金矿)。热液 中 20% 的 H₂S 转变为 SO², 则闪锌矿 δ ³⁴S) 下降约7 ×10⁻³(十里铺银矿)。

 $Ca^{2+} + SO4^{2-} = CaSO4(石膏)$ $G^{0}_{500} = -78.503 \text{ kJ}$ H2+ 0.5O2= H2O $G^{0}_{500} = -219.105 \text{ kJ}$

500K 条件下, 当 *f*(O₂) = 10⁻³⁶时,则 *f*(H₂) = 10⁻⁵.根据化学反应式:

 $H_2S + 4H_2O = 4H_2 + SO_4^{2-} + 2H^{+}$

 $G_{500}^0 = 295.475 \text{ kJ}_{\circ}$

当 $f(H_2) = 10^{-5}$, $f(H^*) = 10^{-5}$ 时, 则[SO4]/ [H₂S] = 0.1, 即热液中约 10%的 H₂S 已转变为 SO²-。根据矿区石英包裹体分析结果, 尚达不到石膏 的沉积条件, 这与矿石成分相吻合。这表明硫同位素 的差异是由于流体演化过程中氧逸度增加, 导致部 分 H₂S 转化为SO²-。表明十里铺银矿矿化流体与金 翅岭金矿可能是同源演化的岩浆热液。

表 5 金翅岭金矿硫同位素特征

Table 5 S-isotope characteristics of Jinchiling Au mine

样 号	矿 物	$\delta(^{34}S)(CDT)/10^{-3}$
S-6(十里铺银矿)	黄铁矿	+ 4.7
J19-2(金翅岭金矿)	黄铁矿	+ 4.7
J17-2(金翅岭金矿)	黄铁矿	+ 4.8
S-6(十里铺银矿)	闪锌矿	- 4.6
J19-2(金翅岭金矿)	闪锌矿	+ 3.0
J17-2(金翅岭金矿)	闪锌矿	+ 2.6

图 3 夏甸金矿 号脉成矿预测图 Fig.3 Ore prediction map of vein, Xiadian gold mine

常与W, Mo 等高温元素异 常叠加出现,可能指示深部 或旁侧沿侧伏方向存在矿 体。Au/Ag, Bi/Hg, Co/Ni, W/Hg, W/Sb, As/Sb 等元 素比值形成的等值线高值区 经常代表了矿化流体活动的 中心。

应用以上方法,我们先 后对玲珑九曲金矿、灵山沟 金矿、夏甸金矿、金翅岭金 矿、姜家窑金矿及蓬莱黑岚 沟金矿和小秦岭文峪金矿深 部进行了成矿预测,收到了 很好的找矿效果(图 3)。其 中,灵山沟金矿新增储量 20 t,金 翅岭金矿新增储量 1.5 t,小 秦岭文峪金矿深部新增储量 20~30 t。

6 成矿预测方法

成矿预测是对矿区各种地质信息进行综合研究:

(1)构造发育强度(包括矿化蚀变带发育规模) 是进行深部预测的主要基础。

(2)包括对矿区各成矿阶段构造应力场的研究, 矿体侧伏与侧列规律的研究,构造面趋势分析是构 造预测的重要手段。

(3)多阶段矿化叠加、矿石矿物组合复杂是深部 发育矿化富集段的重要证据。

(4) 矿石矿物结构复杂、黄铁矿有多阶段和多个 世代、碎裂结构发育、黄铁矿晶形复杂是有利的找矿 标志。

(5) 流体包裹体标志: 多阶段石英发育, 并且发 育中高温石英和中低温石英包裹体(130~350), 石英包裹体类型复杂, 发育含二氧化碳包裹体是有 利的找矿标志。

(6) 元素地球化学标志: Au 及 Ag, As, Bi, Sb, Cu, Pb, Zn, Hg 等元素与金矿化密切相关, 根据异常 常可发现金矿, 这些元素的高异常且多个元素异常 相伴出现是找矿的重要信息。Hg, Sb 等低温元素异

参考文献:

- [1] 吕古贤,林文蔚,郭涛,等.金矿成矿过程中构造应力场转变于 热液浓缩-稀释作用.地学前缘[J].2001,3,(4):253-264.
- [2] 刘伟. 岩浆流体在热液矿床形成中的作用[J]. 地学前缘, 2001,3: 203-215.
- [3] 李晓明.山东三山岛金矿床氢氧碳稳定同位素研究及其应用.
 地质找矿论丛, 1988, 3(3): 62-71.
- [4] 石连汉, 马风俊, 王铁军, 等. 山东省招远市夏甸金矿成矿条件 及成矿预测研究[R]. 天津: 天津地质研究院, 1992.
- [5] 石连汉,马风俊,王铁军,等.招远金矿区域地质灵山沟金矿控 矿构造地球化学及成矿预测研究[R].天津:天津地质研究院, 1990.
- [6] 敬成贵. 灵山沟金矿床地球化学特征及成矿预测[D]. 天津: 天 津地质研究院, 1988.
- [7] 曾庆丰. 成矿裂隙的生成和充填及其脉动性[J]. 地质科学, 1978, (2).
- [8] 毛华海,张哲儒. 热液中金的沉淀机理研究综述[J]. 地质地球 化学, 1997, (2).
- [9] 王铁军. 金迁移的一种可能机理- 羰基络合物[J]. 地质找矿论 丛, 1998, 13(2): 82-84.
- [10] 王铁军,石连汉,马风俊,等.山东省黑岚沟-齐家沟金矿床成 矿模式及矿化富集标志[R].天津:天津地质研究院,1997.
- [11] 於崇文. 热液成矿作用动力学[M]. 武汉: 中国地质大学出版 社, 1993.

ORE FIUID EVOLUTION AND ORE PREDICTION OF MAGMATIC HYDROTHERMAL GOLD DEPOSITS IN JIAODONG AREA WANG Tie-jun¹, YAN Fang²

(1. Tianjin Geological A cademy, Tianjin 300061, China; 2. Qixia Jinke Gold Mining Ltd. Qixia 365002, China)

Abstract: Ore formation of magmatic hydrothermal gold deposit was not once complted. It was formed in multiple stages which are not only manifested by ore structures and textures but also by fluid inclusion observations. On the same section or even in the same quartz grain occur different primary fluid inclusions. This indicates that the ascending CO₂-bearing hydrothermal fluid was frequently mixed with the water trapped in fractural zones, i. e. ore fluid was multiply pulsed into the ore-forming system and mineralization is overprinted in the vertical direction. The early mineralization took place in shallow part then as the time passed temperature dropped and ore-forming field shifted to depth i. e. mineralization took place to more depth. Thorefore, multiple ore concentrations occur in profile interpaced with barren or poor parts. **Key words**: gold deposit; magmatic hydrothermal fluid; ore-forming field; stress fied; fluid inclusion; Jiaodong area

(上接第163页)

- [4] 王登红. 广西大厂电气石的成分与成因初探[J]. 岩石矿物学杂 志, 1996, 15(3): 280-288.
- [5] 毛景文. 电气石对成岩成矿环境的示踪性及应用条件[J]. 地质 论评, 1993, 39(6): 497-507.
- [6] 叶松.山西中条山铜矿田电气石与电气石岩的研究[J].岩石矿 物学杂志, 1997, 16(2):160-169.
- [7] 冯有利. 电气石在矿床地球化学探矿中的应用[J]. 河南地质情 报, 1993, 1: 20-28.
- [8] 孙海田. 中条山铜矿区电气石特征及其对成矿作用的示踪意义

[J]. 岩石矿物学杂志, 1989, 8(3): 232-242.

- [9] 李上森.前寒武纪富电气石岩石的成因和意义[J].国外前寒武 纪地质,1994,(2):60-73.
- [10] 夏学惠. 辽东裂谷带硫化物矿床内电气石系列矿物学与找矿 关系[J]. 矿物岩石, 1995, 15(4): 62-71.
- [11] 黄作良. 辽东硼矿床中电气石的矿物学特征及成因意义[J].岩石矿物学杂志, 1996, 15(4): 365–378.
- [12] 薛春纪. 东秦岭泥盆纪山阳—柞水成矿区电气石矿物化学和 硼同位素组成[J]. 地球化学, 1997, 26(1): 36-44.

RELATION BETWEEN TOURMALINE CHEMICAL FEATURE AND RELATED DEPOSIT WANG Jin-jun¹, ZHAO Feng²

(1. China university of Geology (Beijing), Beijing 100083, China;
2. Xinjiang normal university, 830054, China)

Abstract: Tourmaline is a silicate mineral containing volatile component occuring together with other minerals as accessory mineral in minor content, but its content is over 60% in the tourmaline rock and is rarely studied before. Studies and exploration of large size Sn and W ore deposits in recent 10 years show close relation of tourmaline with them. Comparison of FeO/(FeO+ MgO) of tourmaline in some of the deposits in China and those abroad, together with boron isotope results for some typical deposits reveal that certain tourmaline characteres correspond to certain ore deposits.

Key words: tourmaline; tin or wolfram ore deposit; ratio; boron isotope