文章编号: 1001-1412(2000) 02-0097-13

冀北含银岩石建造、 区域地球化学特征及成矿预测

杨敏之,黄国君,张 民

(天津地质研究院,天津 300061)

摘 要: 从构造地质位置、岩石类型、岩石学、岩石化学、含银丰度、区域展布等方面,确定了冀北存在有3种含银岩石建造类型(1.古元古代含银变质岩建造;2.中元古代高于庄期含银碳酸盐岩建造;3.中生代晚侏罗世张家口期含银火山岩建造)。基于各含银岩石建造内Ag,Au,Cu,Pb,Zn,Mn,W,Ni,Sn,Cr,B,Ti,V,Mo,Co等15个元素的化学定量分析,R型聚类分析、因子分析和相关矩阵分析,明确了冀北含银岩石建造的区域地球化学特征。从区域地质发展史、地层层序、同位素年代学、构造-变质-岩浆-火山作用、银矿成矿作用的演化上,建立了冀北含银岩石建造的区域成矿模式。提出6个银矿成矿远景区。

关键词: 含银岩石建造类型;区域地球化学特征;区域成矿模式;成矿远景预测区 中图分类号: P612; P618.52 文献标识码: A

1 区域地质背景

冀北位于大陆边缘活动地带,地处大兴安岭—内蒙海西活动带与华北克拉通交接部位,在 前寒武纪结晶基底上,海西期、印支期、燕山期构造作用,变质作用和岩浆—火山作用频繁活 动。

冀北从北到南出现5条EW向的深断裂:围场—康保断裂、丰宁—隆化断裂、大庙—娘娘 庙断裂、平泉—赤城—尚义断裂和密云—喜峰口大断裂。从西向东出现2条NNE向断裂:张 北—沽源断裂和赤城—丰宁—围场断裂。据上述构造格局的分布,冀北出现的3个含银岩石建 造类型和17个银矿床构成了3个含银岩石建造成矿带和6个银矿成矿区:①丰宁—平泉—围 场含银火山岩建造成矿带(包括牛圈子—营房银矿成矿区和围场—扣花营银矿区);②崇礼— 赤城—蔡家营含银变质岩岩石建造成矿带(包括蔡家营—青羊沟银矿成矿区);③相广—密云 —建昌含银碳酸盐岩石建造成矿带(相广—阳坡洞银矿区、密云—银冶岭银矿区和建昌八家子

收稿日期: 2000-03-07;

基金项目:国家自然科学基金项目(批准号 49273174)资助。

第一作者简介:杨敏之(1931-),男,山东安邱人,教授、博士生导师,长期从事金属矿床地质和地球化学研究工作。

银矿区)。

98

冀北为我国重要的银矿密集区,是大型、超大型银矿成矿作用发育地带,为银矿资源开发 有远景的地区。

2 含银岩石建造类型及其区域地球化学特征

2.1 含银火山岩建造

2.1.1 层位、层序(表 1) 冀北含银火山岩建造产出的层位为上侏罗统东岭台群张家口组, 与下伏上侏罗统白旗组灰紫色角闪安山岩和上覆下白垩统滦平群灰白色凝灰质砾岩均呈假整

			Table	e. 1 Stratigraph	ic column of Jibei a	area.
罞	Ŗ	系	统	群	组	
¢⊊Α	⊢⊞	第四系				20 M -
체크	E介	第三系				
			上一中		土井子组	80 M a
		白	白垩统		洗马林组	
			آ		青石砬组	
		単	· 白	滦	南店组	
4	Þ		山 王	平	花吉营组	
		系		群	西瓜园组	
			鈗		大北沟组	
			上件里体	大阪ム田	张家口组	140 Ma
А	-	侏	上体夕坑	ㅈᄣᆸᅋᅲ	白旗组	含银火山岩建造
- 1	E				后城组	
		罗	中侏罗统	长山峪群	髫髻山组	
					九龙山组	
		系	下件型体	门头沟群	下花园组	
罞	Ŗ		ドホシュル	门大冯轩	南大岭组	195 Ma 印支运动
		Ш	上三叠统		杏石口组	
		 	中三叠统		二马营组	
			下三叠纮		和尚沟组	
		が	下二重机		刘家沟组	
± 4	L典	奥陶系				440 Ma加重示运动
	L91	寒武系				630 Ma
	新	震旦系				1 000 M a 晋宁运动
元		青白口系				in a concern
古	中	蓟县系		红旗营子群		
宇		长城系				
	古			单塔子群		
太	新					2 500 M a 早新运动
百	甲					3 000 M a
于	百					1

表1 冀北区域地层简表

合接触。张家口组厚 2 893.7 m,下部厚 115 m,由浅紫色灰色砾岩组成,顶部为砖红色凝灰质 粉砂岩;中部主要为灰紫色粗面岩、灰紫色流纹岩、灰紫色和灰白色巨厚层斑流纹岩,厚 1 908.8 m;上部为紫灰色含角砾流纹质凝灰熔岩、灰白色晶屑凝灰岩、粉红色流纹质含角砾晶 屑凝灰岩,厚 869.9 m,产有银、铅、锌矿床。

张家口组含银火山岩建造呈 NE—NNE 向分布于冀北丰宁火山岩盆地、围场火山岩盆地 和滦平火山岩盆地内(图1)。

图 1 冀北中生代火山岩盆地、浅层壳岩套有关银矿床分布简图
 Fig. 1 Sketch showing distribution of Ag deposits related to Ag- bearing rock formation in the Mesozoic volcanic basins, Jibei area.
 1. 火山岩盆地 2. 浅成低温矿床 3. 层控热液叠加型 4. 陆相火山岩型 5. 断裂构造

2.1.2 含银火山岩建造的岩石类型、岩石化学 冀北中生界上侏罗统含银火山岩建造是一套 碱钙性的中酸性火山岩,主要由粉红色流纹质岩屑晶屑凝灰岩、流纹质熔凝灰岩,夹有流纹岩、 粗面岩、安山岩、火山碎屑岩、英安质火山角砾岩、流纹质角砾岩和石英斑岩、石英粗面岩、石英 二长斑岩等次火山岩构成。从层序上,下部为安山质晶屑凝灰岩、粗面岩,上部为英安质岩屑晶 屑凝灰岩、流纹岩。这反映了火山喷发作用由早期中性火山岩向晚期酸性偏碱性火山岩演化的 趋势。

含银的流纹质晶屑凝灰岩:粉红色、紫红色、灰紫色,具有流纹质复屑结构、火焰状浆屑结构、花刺状玻屑结构,假流纹构造。岩石化学组成(标本 M—7,满汉图):w(SiO₂)70.45%,

w(Al2O3) 14. 37%, w(TiO2) 0. 25%, w(CaO) 1. 05%, w(MgO) 0. 89%, w(Fe2O3) 2. 78%, w(FeO) 0. 10%, w(K2O) 6. 50%, w(Na2O) 2. 24%, w(MnO) 0. 073%, w(H2O⁺) 0. 72%, w(CO2) 0. 77%, w(P2O5) 0. 064%, w(Cr2O3) 0. 006%。据岩石化学分析结果, 编制了(Na2O + K2O) -SiO2 图解(图 2), 说明冀北含银火山 岩建造内的火山岩属偏碱(富钾) 的钙碱系列 siO₂ 的火山岩。

张家口组含银的流纹质晶屑凝灰岩、安山岩、石英斑岩的 Rb-Sr 等时代年龄为(138.1±
6.0) Ma(沽源东辛营村南)。

据冀北中生代陆相火山岩的地层层序、岩石组合、岩石类型的变异和演化说明下侏罗统 (门头沟群)主要为玄武岩类,中侏罗统(长山 峪群)为安山岩,粗面安山岩,上侏罗统(东岭 台群)为粗面岩 流纹岩,反映了冀北中生代 侏罗世火山喷发作用-火山岩喷发序列从早到 晚由基性火山岩 中性火山岩 酸性火山岩 的演化,表明为一大的火山喷发旋回。

2.1.3 含银火山岩建造的区域地球化学特征

通过对冀北含银火山岩建造有关火山岩的 63 个样品的 945 个 Au, Ag, Cu, Pb, Mo, W, Ni, Sn, Cr, B, Ti, V, Mo, Zn, Co 等 15 个元素 定量分析结果, 经 R 型聚类分析(图 3)、矩阵 分析和 R 型因子分析结果(表 2,表 3),明确了 冀北含银火山岩建造在区域地球化学上有以 下主要特征:

图 2 冀北含银岩石建造火山岩岩石类别图

Fig. 2 Discriminative plot of meta-volcanics of Ag- bearing rock formations, Jibei area
a. 过渡玄武岩 b. 玄武安山岩 c. 安山英安岩, w (H2O) < 2%

流纹岩类岩石: 满汉图 2(M-7)、

营房 3(Yn-2)、蔡家营 1(Ch2-6)

安山岩类岩石: 营房 5(Yn-4)、青羊沟 6(Qn-4) 碱性玄武岩类岩石: 青羊沟 7(Qn-3)

英安岩类岩石:蔡家营 4(Ch2—3)

(1) 含银火山岩岩石内, 区域上也出现二大类四亚类元素组合:

第一大类: Ag, Au, Cu, Pb, W, Mo, Mn, Zn, Sn;

第一亚类: Au, Ag, Pb, Cu;

第二亚类: W, Mo, Mn, Zn, Sn。

第二大类: Ni, Cr, Ti, Co, B;

第三亚类: Ni, Cr, V;

第四亚类: Ti, Co, B。

(2) 几类元素组合相关性强的元素依次为 Ag-Pb Ag-Au-Cu-Pb Mn-Zn- Ni-Cr-V W-Mo Ti-Co-B, 这说明 Pb, Cu, Au, Mn, Zn, Ni, Co, Cr 为找银矿的标志元素。

图 3 冀北含银岩石建造岩石元素分析数据的 R 型聚类分析谱系图

Fig. 3 R- type hierarchical clustering analysis of rocks and elements for Ag- bearing formations in Jibei area.

(3) 导致各元素组合出现不同的元素,为元素物质来源源区的差异所致。①源于地层岩石内的元素:Mn(菱锰矿、锰白云石、含锰方解石); Ni, CO(胶状黄铁矿); B(方硼石、电气石); Ag-Pb(含银方铅矿、辉银矿); Zn-Cu(黄色闪锌矿、黄铜矿)。②源于经改造的含银流体: Ag(辉银矿); Ag-Au(金银矿); Ag-Cu-Au(银黝铜矿)。③源于叠加-成矿流体: Ag-Pb(脉状自然银、银方铅矿); Ag-Au(金银矿); Mo-W(辉钼矿、白钨矿)。

表 2 冀北含银建造主要元素相关矩阵分析结果表

	Т	ab	bl	e.	2		Co	rr e	lat	t iv e	e r	nat	rix	an an	ıa l	ysis	5 0	of	main	el	lements	in	A	Ag−	bear	ing	forr	nat	ions	, J	∫ibe	i a	ıre	а
--	---	----	----	----	---	--	----	------	-----	--------	-----	-----	-----	-------	------	------	-----	----	------	----	---------	----	---	-----	------	-----	------	-----	------	-----	------	-----	-----	---

-															
元素	₹ Ag	Au	Cu	Pb	Mn	W	Ni	Sn	Cr	В	Ti	V	Mo	Zn	Co
Ag	1.000	0. 228	0. 239	0.426	0. 189	0.208	- 0.092	0.125	- 0.089	- 0.004	- 0.182	- 0.135	0.254	0.179	0.006
Au	0.228	1.000	0.545	0.341	0.126	0.203	- 0.125	0.131	- 0.079	- 0.008	- 0.239	- 0.176	0. 195	0.351	0.000
Gu	0.239	0.545	1.000	0.586	0.016	0.008	- 0.111	0.342	- 0.114	- 0.092	- 0.199	- 0.131	0.017	0.154	- 0.043
Pb	0.426	0.341	0.580	1.000	0.335	0.473	- 0.233	0.354	- 0.243	- 0.01	- 0.279	- 0.216	0. 497	0.380	- 0.156
Mn	0. 189	0.126	0.016	0.335	1.000	0.231	- 0.179 -	0.071	- 0.238	- 0.140	- 0.176	- 0.163	0.445	0.485	0.026
W	0.208	0.203	0.008	0.473	0. 231	1.000	- 0.162 -	0.047	- 0.145	- 0.054	- 0.104	- 0.125	0.462	0.014	- 0.171
Ni	- 0.092	- 0.125	- 0.111	- 0.233	- 0.179	- 0.162	1.000 -	0.083	0.898	0. 192	0.506	0.717	- 0.143	- 0.115	0.657
Sn	0.125	0.131	0.342	0.354	- 0.071	- 0.047	- 0.083	1.000	- 0.072	- 0.060	- 0.146	- 0.102	- 0.046	0.036	- 0.108
\mathbf{Cr}	- 0.089	- 0.079	- 0.114	- 0.243	- 0.238	- 0.145	0.898 -	0.072	1.000	0.417	0. 429	0.759	- 0.123	- 0.137	0.427
в	- 0.004	- 0.008	- 0.092	- 0.017	- 0.140	- 0.054	0. 192 –	0.060	0.417	1.000	0.119	0.391	- 0.015	- 0.040	0.025
Тi	- 0.182	- 0.239	- 0.199	- 0.279	- 0.176	- 0.104	0.506 -	0.146	0.429	0.119	1.000	0.643	- 0.141	- 0.130	0.447
V	- 0.135	- 0.179	- 0.131	- 0.216	- 0.163	- 0.125	0.717 -	0.102	0.759	0.391	0.643	1.000	- 0.135	- 0.109	0.427
Mo	0.254	0. 195	0.017	0.497	0.445	0.462	- 0.143 -	0.046	- 0.123	- 0.015	0.141	- 0.135	1.000	0.154	- 0.120
Zn	0.179	0.351	0.154	0.380	0.485	0.014	- 0.115	0.036	- 0.137	- 0.040	- 0.130	- 0.109	0.154	1.000	0.082
Go	0.006	0.000	- 0.043	- 0.156	0.026	- 0.171	0.657 -	0.108	0.427	0.025	0.447	0.472	- 0.120	0.082	1.000

表 3 冀北含银火岩建造岩石矿石元素正交因子负载值表

Table. 2 Orthogonal factor load values of elements of rock and ore related

	1 .	1	C	T 1 1	•
$to A \sigma -$	hearmo	rock	tormations	lihe	i area
to ng	Duaring	1000	ioimations,	JIDC.	arca

			-	-				
元素	F_1	F_2	F_3	F_4	F_5	F_6	\mathbf{F}_7	F_8
A g	0.027	- 0.166	0.130	- 0.091	0.018	- 0.066	0.954	0.078
Au	0.009	- 0.137	0.876	- 0.161	0.017	0.083	0.029	0.185
Cu	0.071	0.004	0.799	0.001	- 0.065	- 0.384	0.145	- 0.041
Pb	0.181	- 0.540	0.397	- 0.288	0.055	0.468	0.280	- 0.041
Mn	0.059	- 0.349	- 0.097	- 0.789	- 0.142	0.027	0.058	0.123
W	0.136	- 0.858	0.118	0.076	- 0.034	0.078	0.063	- 0.088
Ni	- 0.959	0.066	- 0.052	0.096	0.032	0.012	- 0.033	- 0.078
Sn	0.038	0.060	- 0.110	0.033	- 0.040	- 0.927	0.030	0.077
Cr	- 0.882	0.039	- 0.033	0.161	0.333	0.007	- 0.069	0.006
В	- 0.177	0.018	- 0.018	0.026	0.937	0.041	0.026	- 0.027
Ti	- 0.434	0.051	- 0.159	0.072	0.015	0.096	- 0.094	- 0.187
V	- 0.726	0.031	- 0.101	0.60	0.329	0.004	0.090	0.175
Mo	0.013	- 0.198	- 0.022	0.270	0.009	- 0.004	0.090	0.175
Zn	0.063	0.055	0.272	- 0.863	0.062	- 0.019	0.061	- 0.031
Co	- 0.734	0.171	0.049	- 0.136	- 0.256	0.132	0.125	- 0.237

2.2 含银碳酸盐岩石建造

2.2.1 层位层序、同位素年代及其分布 冀北中元古界长城系高于庄组含银碳酸盐岩石建造 产于高于庄组地层第二岩段内(表 4),据我们对密云银冶岭东山、李家峪、孔家店、河北兴隆、

表 4 冀北含银碳酸盐岩石建造地层层序、岩性、岩相、沉积环境对比表

Table. 4 Comparison of stratigraphic sequency, lithology, facies and sedimentary

setting of Ag- bearing carbonate rock formations in Jibei area

+#	P	泸	可北兴隆高	板河剖面			天津蓟县城	北剖面	ī			建昌八家子	P剖面	
τœ	云	岩	段	相	段	岩	段	ħ	目影	£	岩	段	相	段
蓟县系	杨 庄 组	砖红色粉 岩	砂质白云	潮间—_滇	朝上带	砖红色粉 岩	砂质白云	潮	间——潮」	E	砖红色粉 岩	砂质白云	潮间—	潮上带
ĸ	高	沥青 质及 云岩段 含燧石白	角砾状白 云岩段	潮下高 520:	能相 米	沥青质及 云岩含煅 段	的角砾状白 还白云岩	潮 ⁻	下高能帮 440 米	Ħ	中—厚层 色灰岩,白	沥青质黑 3云质灰岩	潮下高 780	高能带) 米
		瘤状白云	岩	广海低 40≯	;能相 米	瘤状白云	岩段	广; 1	海低能青 080 米	ŧ	硅质条带. 白云岩	燧石条带	广海们 280	€能相) 米
城	于	含铅、锌、 ⁵ 白云岩 含黄铁矿 岩夹黑色 含锰泥质	银矿泥质 泥质白云 页岩 白云岩	潮间高能林 泻湖相	目—潮坪 80 米	细 晶泥 虙 黄 铁矿 派 含锰硼砂	前白云岩含 3晶白云岩 质白云岩	潮坪	² —泻湖 200 米	相	含银、铅、 岩,含黄铅 白云岩、名	锌泥质灰 铁矿层黑色 含锰白云岩	潮间高 潮坪相	能相— 160 米
	组	燧石白云』 泥质 白云 质砂岩	贡砂岩 岩夹白云	潮上高 240:	能相 米	燧石白云 英砂岩	岩夹有石	潮. 2	上高能带 400 米	ŧ	砂 质白 云 砂岩	岩夹石英	潮上高 20	高能带 米
系	大红 峪组	石英	岩	滨海	相	石英岩,	变余砂岩	;	滨海相		石英岩,	变余砂岩	滨洋	每相

高板河、天津蓟县城北剖面、建昌八家子、辽西柴屯、湾沟、马家沟高于庄组地层地质剖面的地 质编录工作,说明高于庄组二段地层主要由薄层含锰白云岩、含有黄铁矿的黑色白云质灰岩、 含有方硼石的泥晶白云岩、含有自然银的硅质白云质灰岩组成,共厚180~213 m,高于庄组上 部的第三岩性段,由板状白云质灰岩、泥质白云岩、灰质白云岩和黑色钙质页岩组成,厚658 m;下部第一岩性段,由燧石白云岩、变余石英砂岩、泥质白云岩、白云质砂岩、粉砂岩组成,厚 347 m。据区域地层对比,我们将高于庄组第二岩性段含银碳酸盐岩石建造在层序上再分为三 个亚岩性段(自下而上):①含硼锰亚岩性段:②含黄铁矿亚岩性段:③含银铅锌亚岩性段。

高于庄组第二岩性段的含银碳酸盐岩石建造,分布于平泉—尚义 EW 向深断裂以南的密 云—兴隆—建昌一带。中元古界长城系高于庄组地层的 K-Ar 同位素等时线年龄为 1 434 Ma。 2.2.2 岩石类型、岩石化学、沉积-古环境 含银碳酸盐岩石建造主要由灰白色含锰白云岩、 粉砂质白云岩、灰质白云岩、含硼灰质白云岩、硅质白云质灰岩组成,底部出现粉砂质白云岩。 含银硅质白云质灰岩具有微层理构造,细晶、泥晶、盆屑结构。对冀北 7 个地区 20 个含银碳酸 盐岩的岩石化学分析结果,说明含银碳酸盐岩石主体为白云岩类岩石,其内均含w(MnO) 1. 09%~2.70%。从岩石类型、岩相、层序演化上看高于庄组含银碳酸盐岩石建造形成的沉积-古 环境是由底部的潮上高能带到中部的潮间相带(含锰) 潮坪相带(含银铅锌) 上部的潮下 带,为一海浸的沉积旋回。

2.2.3 区域地球化学特征 对冀北7个地区含银碳酸盐建造 52个岩石样品 12个元素(Ag, Au, Pb, Zn, V, Ni, Co, Ca, Y, Mn, Sr, Ba)、含银碳酸盐建造有关的7个银矿床 70个银矿石样品 15个元素(Ag, Au, Pb, Zn, Bi, Sb, As, Co, Ni, Ge, Ga, Se, Te, Cd, Mn)的多元素定量分析结果,进行了相关矩阵分析(表 5、表 7),正交因子负载值(表 6、表 8)和R型聚类分析(图 4、图 5)计算结果说明: (1)区域上含银碳酸盐建造岩石内出现 Ag-Au-Pb-Zn-Mn, Ni-Co-Ce-Y, Sr-Ba元素组合;有关银矿石内出现 Ag-Au-Pb-Zn-Bi-Sb-As, Ge-Ga, Ni-Co, Se-Te 元素组合; (2)岩石、矿石内特征的相关元素为 Ag-Au-Pb-Zn, Co-Ni-Mn, Sr-Ba, Se-Te, Ag-Sb-Au-Bi-Pb,这些元素的一致性和相似性,指示了含银碳酸盐建造有关银矿床具有层控性的特征; (3)诸元素来

表 5 冀北中元古界长城系高于庄组含银碳酸盐岩石建造岩石元素相关矩阵分析结果表

Table. 5 Elemental correlative matrix analysis of Ag- bearing carbonaterocks in Gaoyuzhuang formation of Middle Proterozoic Changcheng series

元素	Ag	Au	Pb	Zn	V	N i	Со	Се	Y	M n	\mathbf{Sr}	Ba
A g	1.000	0.9435	0.9998	0.8714	- 0. 01 34	- 0. 1321	- 0.1069	0.0704	- 0.001	0. 53 56	0.0899	- 0. 07959
A u	0.9436	1.0000	0.9431	0.8953	- 0.0042	- 0.252	- 0.1332	0. 05 82	- 0.244	0. 5323	- 0.1059	- 0. 07753
Pb	0. 99 98	0.9431	1.0000	0.8713	- 0. 0143	- 0. 2318	- 0.1069	0. 0741	- 0.223	0. 5343	- 0.0999	- 0. 08 11 3
Zn	0. 8714	0.8953	0.8713	1.0000	- 0. 0204	- 0. 0907	- 0.1530-	0. 05 57	- 0.210	0. 4947	- 0.07998	0. 07 32 2
V	- 0. 01 34 -	- 0.0042	- 0.0143	0.0204	1. 0000	0. 1594	0.7071	0.0092	0.7181-	0. 0454	0.78949	0.8786
N i	- 0. 2321 -	- 0.2520	- 0.2316	- 0.0907	0. 1594	1. 0000	- 0.0559-	- 0. 7908	0.1836-	0.0504	0.61148	0. 31 58 9
Co	- 0. 1069 -	- 0.1332	- 0.1069	- 0.1530	0. 7071	- 0. 05 59	1.0000	0. 2572	0.5031-	0. 1050	0.47305	0. 53974
Ce	0.0704	0.0582	0.0741	0.0557	0. 0092	- 0. 7908	0.2572	1. 0000	0.0027-	0. 1563	- 0.11996	- 0. 14491
Y	- 0. 2210 -	- 0.2441	- 0.2232	- 0.2101	0. 71 82	0. 1836	0.5031	0.0027	1.0000	0.0688	0.65458	0.66554
Mn	0. 5356	0.5323	0.5343	0.4947	0. 0454	- 0.0504	- 0.1052-	- 0. 1563	0.0688	1. 0000	- 0.00545	0. 11646
\mathbf{Sr}	- 0. 08 99 2	- 0.1059	- 0.090	- 0.080	0. 789	0. 3614	0.4730-	- 0. 1199	0.6546-	0.0054	1.0000	0. 83 53 2
Ba	- 0. 07959	0.0775	- 0.0811	- 0.0752	0.8078	0. 31 59	0.5397-	- 0. 1449	0.665	0.1165	0.83532	1.0000

源于含银碳酸盐建造岩石的有 Ag, Pb, Zn, Au, Mn, Sr, Ba, Ni, Co, V;源于改造-叠加流体的有 Se, Te, Bi, As 和部分 Ag, Au, Pb, Zn。

2.3 含银变质岩建造

2.3.1 层位、同位素年代及其分布(图6) 含银变质岩建造分布于崇礼—赤城断裂以北、康保—围场EW 向断裂以南地带。据我们对崇礼北红旗营子村、蔡家营、赤城青羊沟、丰宁南、隆化北地质剖面观察和编录,说明红旗营子组下部为黑云变粒岩、石榴黑云变粒岩、石墨斜长片麻岩、斜长角闪岩,夹有3~5 层大理岩;上部为硅线石斜长变粒岩、角闪斜长片麻岩、黑云斜长 变粒岩、角闪变粒岩、角闪斜长变粒岩、黑云斜长片麻岩,总厚4500~6400m。蔡家营、青羊沟 铅锌银矿床银-铅矿体产于红旗营子组上部岩段的角闪黑云变粒岩、角闪斜长变粒岩内。

表 6 冀北含银碳酸盐岩石建造岩石主要元素正交因子负载值表

Γable. 6	Ort hogonal	factor loa	ad values	of major	elements in	Ag-	bearing	carbo nat e
	<i>(</i>)					• •	()	

元素	\mathbf{F}_{1}	F_2	\mathbf{F}_{3}
Ag	0.967746	- 0.0647801	0. 121222
Au	0.960594	- 0. 0780536	0.117523
Pb	0.967204	- 0.0657048	0. 123041
Zn	0.924302	- 0. 0795337	- 0.0263452
V	0. 0398619	0.942690	0.0168738
Ni	- 0.143444	0. 189371	- 0.905237
Co	- 0.111719	0.751624	0.325307
Ce	- 0.0401756	0. 035901	0.945037
Y	- 0.154623	0.816248	- 0.0497060
M n	0.661526	0.0407194	- 0.159830
Sr	- 0.0172265	0.871832	- 0. 223387
Ba	0.0177303	0.896348	- 0.210543

rock formations in Jibei area

表 7 冀北中元古界长城系高于庄组含银碳酸盐岩石建造有关银矿石元素相关矩阵分析结果表

Table. 7 Correlative matrix analysis of relevant elements of Ag- bearing rocks in

Gaoyuzhuang formation, Changcheng series

元素	Ag	Au	Pb	Zn	Bi	\mathbf{Sb}	As	CO	Ni	Ge	Ga	Se	Те	Cd	Mn
Ag	1.000	0.455	0.400	0.077	0.475	0.687	0.203	0.153	- 0.197	- 0.284 -	0.075	0.352	- 0.508	0.114 -	0.153
Au	0.4549	1.000	- 0.0387	0.2106	0.5186	0. 2248	- 0.1179	0.1573	0.3814	- 0.3462 -	0. 2753	0.1746	0.2732	0.3148 -	0.2062
Pb	0.4003 -	- 0.0381	1.0000	0.1336	- 0.0305	0.4719	- 0.0293	- 0.1097	- 0.0540	- 0.2664 -	0. 0281	0.2542	0.1269	0.1302 -	0.1512
Zn	0.0772	0.8106	0.1316	1.0000	0.2193	0.0181	- 0.0535	- 0.0727	0.1505	- 0.2460 -	0.1307	0.3097	0.2338	0.9574 -	0.2724
Bi	0.4752	0.5186	- 0.0305	0.2193	1.0000 -	- 0. 1338	- 0.1491	0.1024	0.2715	- 0.2689 -	0.3775	0.7040	0.7515	0.2479 -	0.1687
\mathbf{Sb}	0.6871	0.2248	0.4719	0.0181	- 0.1338	1.0000	0.1749	- 0.0636	- 0.0079	- 0.1878	0. 1973-	0.1492	- 0.1081	0.0026 -	0.0485
As	0.2032 -	0.1179	- 0.0293 -	0.0535	- 0.1491	0.1749	1.0000	0.1245	0.1409	- 0.0013 -	0.0739-	0.0908	- 0.0767	0.084 -	0.0978
CO	0.1532	0.1573	- 0.1097 -	0.0727	0.1024 -	- 0.0636	- 0.1241	1.0000	0.561	- 0.0359 -	0. 0599-	0.0802	0.2224	0.0156	0.02385
Ni	0. 1967	0.3841	- 0.054	0.1505	0.2715	0.0079	- 0.1409	0.5609	1.0000	- 0.1527 -	0. 2914-	0.1575	0.0166	0.289 -	0.05575
Ge -	0.284 -	0.3462	- 0.2664 -	0.2460	- 0.2689 -	- 0. 1878	- 0.0013	- 0.359	- 0.1527	1.0000	0.7781-	0.2049	- 0.1809-	0. 2428	0.035049
Ga –	0.0753 -	0. 2753	- 0.0281 -	0.1307	- 0.3775	0. 1973	- 0.0739	- 0.0599	- 0.2914	0.7781	1.0000-	0.2528	- 0.2066-	0.1713 -	0.1371
Se	0.35159	0.1746	0.2541	0.3097	0.7040 -	- 0. 149	- 0.0908	- 0.0802	- 0.1575	- 0.2047 -	0. 2528	1.0000	0.8487	0.2753 -	0.1828
Те	0.5079	0.2732	0.1269	0.2338	0.7514 -	- 0. 1081	- 0.0767	0. 2224	0.0166	- 0.181 -	0. 2066	0.8487	1.0000	0.2813 -	0.10599
Cd	0.1146	0.3148	0.1302	0.9575	0.2478 -	- 0.0026	- 0.084	0.0156	0.2893	- 0.2428 -	0.1714	0.2755	0.2813	1.0000 -	0.2371
Mn -	0.1532 -	- 0.2060	- 0.1512 -	0.2724	- 0.1687 -	- 0.0485	- 0.0978	0.02385	i – 0.0557	0.0351 -	0. 1371-	0.1828	- 0.106 -	0.2347	1.0000

表 8 冀北含银碳酸盐岩石建造有关银矿石多元素正交因子负载值表

T able. 8 Orthogonal factor load values of major elements in Ag ore of Ag- bearing carbonate rock form ations in Jibei area

元素	F_1	F_2	F ₃	F_4	F_5	F_6
Ag	0.467137	0.733969	- 0. 294183	- 0.028842	- 0.05594	0.283310
Au	0.300793	0.188855	- 0.554095	0.227268	- 0. 22839	0. 193801
Pb	0.082836	0.769261	0.241057	0.138278	- 0.110063	- 0.240496
Zn	0.120477	0.0276028	0.013967	0.948614	- 0.114656	- 0.0421314
Bi	0.849560	- 0.0464327	- 0.281831	0.111118	- 0.200781	0.0501235
$\mathbf{S}\mathbf{b}$	- 0. 166095	0.908147	- 0.086146	- 0.0139619	0.0371328	0. 192239
As	- 0. 105042	0.0569165	0. 174255	- 0.0832001	- 0.0913698	0.855048
Co	0.0681427	- 0.04808	- 0.773921	- 0.127504	0.067961	- 0.167060
Ni	- 0.070489	- 0.01275	- 0.863488	0. 181895	- 0.172883	- 0.0731410
Ge	- 0. 110829	- 0.25485	0.070930	- 0.15262	0.871860	- 0.0125440
Ga	- 0. 185936	0.142316	0. 121303	- 0.0252581	0.935536	- 0.036125
Se	0.908949	0.0486831	0. 220351	0.185070	- 0.106777	- 0.0829647
Те	0.934428	0.0593531	- 0.081106	0.0897495	- 0.0389478	- 0.0540357
Cd	0.129802	0.0245633	- 0. 126496	0.933706	- 0.133812	- 0.705585
Mn	- 0. 175139	- 0.092299	0.0570309	- 0.459611	- 0.267209	- 0.406886

图 4 冀北含银碳酸盐岩石建造银矿石微量元素 R 型聚类分析图解

Fig. 4 R- type cluster analysis of micro-elements from Ag ore in Ag- bearing carbonate rock formation in Jibei area.

古元古界红旗营子组含银变质岩建造的同位素年代,据蔡家营斜长角闪岩内锆石 U-Pb 同位素年龄为2 360 M a(河北地矿三队),滦平团榆树沟黑云斜长变粒岩内锆石 U-Pb 同位素年龄为(2 332.0±7.7) M a(核工业北京地研院 1988);结合区域地层对比(图 6),我们认为红

图 5 冀北含银碳酸盐建造含银岩系岩石微量元素 R 型聚类分析图解

Fig. 5 R- type cluster analysis of micro-elements from rocks in Ag- bearing carbonate rock formation, Jibei area.

旗营子组含银变质岩建造产出的层位为古元古界,可分为两个岩段;上部岩段为低角闪岩相含 银铅锌矿;下部岩段为高角闪岩相变质岩。

2.3.2 含银变质岩建造的岩石类型、岩石化学、形成古环境 含银变质岩建造主要由4种变 质岩类岩石组成:(1)黑云斜长角闪片麻岩类岩石;(2)黑云角闪斜长变粒岩类岩石;(3)斜长角 闪岩类岩石;(4)大理岩类岩石。各类变质岩岩石化学分析结果,经SiO₂-(Na₂O+K₂O)(图2)、 ACF 图解等原岩恢复方法,说明黑云斜长角闪片麻岩类岩石和斜长角闪岩类岩石的原岩为碱 性玄武岩;黑云斜长变粒岩类岩石的原岩为英安岩、流纹岩和安山岩。从变质岩类岩石产出层 序和区域古环境对比研究,说明红旗营子组含银变质岩建造早期为一套裂谷环境下的碱质基 性火山岩(喷发作用形成)。中—晚期为中酸性火山岩喷发和火山凝灰质-火山碎屑岩(喷发-沉 积作用形成),伴有银、铅、锌矿化。

2. 3. 3 区域地球化学特征 对区域上 5 个地区红旗营子组含银变质岩 15 个样品内 Ag, Au, Cu, Pb, Mn, W, Ni, Co, Sn, Cr, B, Ti, V, Mo, Zn 等 15 个元素定量分析结果, 经相关矩阵分析、 R 型聚类分析、正交因子负载值计算, 说明含银变质岩岩石内出现二大类元素组合: (1) Ag-Au-Cu-Pb-W-Mo-Mn-Sn; (2) Ni-Cr-V-Ti-Co-B, 区域上含银变质岩特征的相关元素为: Ag-Mn-Zn, Ag-Cu-Au-Pb, W-Mo, Ni-Cr-V, Ti-Co。诸元素的来源: (1) 为海相中—基性、中—酸性 火山喷发有关的元素: Ni, Cr, V, Ti, Co, Mn, B, 部分 Ag, Cu, Au, Zn(区域变质作用前); (2) 为 变质作用-变质流体-叠加流体作用有关元素: W, Mo, 部分 Ni, Co, Ag-Pb-Zn-Cu-Au, 这说明 含银变质岩建造有关银矿床具有层控-热液叠加成矿作用的特征, 区域上含银变质岩内 Pb, Zn, W, Mo, Cu, Ni, Co 等元素为找寻银矿的指示元素。 第15卷 第2期

宇	界	河北区测队1959年 张家口幅 (1:100万)	天津地质矿产所 19791983年 冀东	天 津地矿 所 1995年 张宣及坝上区	本 文	
元	新元古界		爬旦系	化油芹	(1/ //a 1174	
古	中元古界		蓟县系	1 12 725 41 ⁺		10万年 日初运动
宇	古元古	化德群	青龙河群	(紅旗营子群	红 上 低角闪岩相 炭 段 含银、铅、锌	
	界		双山子群		□ 子 岩 高角闪岩相 群 段	25亿年 相坐王公运动
太	新太古界	红旗营子群	八道河群	单塔子群	单塔子群	30亿年 相当五日运费
古	中太古	! 	-			
宇	界 古太古界	崇 礼 群	迁 西 群	桑干杂岩	桑干杂岩	

图 6 冀北含银变质岩岩石建造层位层序图

Fig. 6 Comparison of horizons and sequency of Ag- bearing metamorphic rock formations, Jibei area.

3 冀北含银岩石建造的地史演化--形成模式

据冀北含银岩石建造产出的区域地质背景、地质发展历史、区域地球化学特征、同位素地 质年代、含银岩石-成矿物质的演化,冀北含银岩石建造的地史演化--形成模式有3个主要阶段:

(1) 古元古代—— 含银变质岩建造形成阶段 2 500~2 300 Ma。迁西运动后沿崇礼—蔡家 营深断裂,古元古代出现裂陷槽-裂谷型的基性——中酸性火山岩喷发作用,形成含银变质岩岩 石建造和银铅锌热水-喷气矿床,经中—新元古代的区域变质作用,形成含银斜长变粒岩,黑云

107

角闪变粒岩,含银的黑云斜长角闪岩等含银变质岩岩石建造。

(2) 中元古代—— 含银碳酸盐岩石建造形成阶段(2000~1500 Ma)。沿丰宁—隆化、尚义 —平泉 EW 向深裂以南地区,中元古代时为一狭长的沉积海槽,晚长城期时出现潮间带—潮 下带碳酸盐岩石沉积,形成含银碳酸盐岩石建造。

(3)中生代——含银火山岩岩石建造形成阶段(195~80 Ma)。冀北地区在侏罗纪—白垩纪时经受燕山期的强烈的构造运动,出现频繁的岩浆-火山作用,在丰宁、围场—牌楼、滦平、相广—赤城等火山-喷发断陷盆地内形成含银火山岩建造(张家口期),这时含银变质岩建造和含银碳酸盐岩石建造都经受活化-改造和热流体的叠加作用。

4 成矿预测

据含银岩石建造产出的区域地质背景、区域地球化学特征、地史演化、控矿条件和二维图像(图7)、三维图像(图8)的显示,我们对冀北地区提出了6个银矿成矿预测区和银矿远景区: ①围场—扣花营—满汉图区;②丰宁—牛圈子—营房区;③张北—蔡家营—沽源区;④赤城— 青羊沟区;⑤宣化—相广区;⑥密云—赤城—建昌区。

图 7 冀北含银建造银含量等值线二维显示图像 (1 24 000)

Fig. 7 Two dimensional plot of contours of

Ag contents for Ag- bearing rock formations in Jibei area.

本文中电算工作,由谭光国高级工程师完成,在此致谢。

图 8 冀北含银建造银含量等值变化的三维显示图像 (1 24 000) Fig. 8 Three dimensional polt of contours of Ag contents for Ag- bearing formations

in Jibei area.

参考文献:

- YANG Min-zhi. Continental Mobile, Au-Ag Deposit Association, Metallogenetic series and models-case studies in Jiaodong and Jibei area[J]. Geology and Mineral Rosources proceedings of MMI. Beijing: Internation Academic publishers, 1996, 54-58.
- [2] 杨敏之. 超大型金、银矿床会聚成矿论—以胶东、冀北为例[A]. 第五届全国矿床会议论文集. 北京: 地质出版社, 1993, 158–159.
- [3] 杨敏之. 华北断块元古代层控铅锌、多金属矿床 类型、成矿区(带)及其区域地球化学特征[A]. 第二届层控矿床地球化 学会议论文集[C]. 天津: 天津地质研究院, 1998, 68-69.
- [4] 中国有色金属工业公司北京矿产地质研究所. 中国银矿[M]. 北京: 北京矿产地质研究所, 1990. 267-285.
- [5] 河北省地质矿产局、河北省、北京市、天津市区域地质志[M].北京:地质出版社,1994.
- [6] 杨兆才. 河北银矿床的成因类型及富集规律[J]. 地质找矿论丛, 1990, 5(4): 16-29.
- [7] 芮宗瑶, 等. 华北陆块北缘及邻区有色金属矿床地质[M]. 北京: 地质出版社, 1994. 383-417.
- [8] 天津地质矿产研究所.中国震旦亚界[M].天津:天津科学技术出版社, 1980. 56-114.
- [9] 丁悌平,等.华北元古宙铅锌成矿带稳定同位素研究[M].北京:北京科学技术出版社,1992.56-114.
- [10] Nishiyama T. and Kusakabe Y. The silver contents in some common minerals [J]. Mining Geology, 1986, 36: 16-20.
- $\begin{bmatrix} 11 \end{bmatrix} \hat{A} \P \hat{E}^{\circ} \hat{E} \iota^{\circ} \vee \hat{A}^{3} . . & \hat{A}^{i} \vee \hat{A}, \iota \hat{A}^{\circ} \hat{A} \hat{A}^{i} \circ \mu^{3} \hat{A}^{3} \vee \P \iota \hat{A} \tilde{\iota} \hat{A}^{i} \hat{A} & \hat{A} \hat{A}^{\circ} \cdot E \hat{A} \hat{A}^{i} \circ \hat{A}^{i} \hat{A}^{3} \iota^{\circ \circ i} \hat{A} \vee \hat{A} \hat{A} \hat{A} = ; \quad \hat{A} \hat{A} \hat{A} \mu \P \iota : \iota^{\circ} \tilde{N}$

[J]. ¶ÀÇ^o ¾^o Ñ, 1998, 6: 635–637.

REGIONAL GEOCHEMICAL FEATURE OF Ag-BEARING ROCK FORMATIONS AND Ag DEPOSIT PREDICTION IN JIBEI AREA

YANG Min-zhi, HUANG Guo-jun, ZHANG Min

(Tianjin Geological Academy, Tianjin 300061, China)

Abstract: Based on geotectonic postion, rock types, petrology, petrochemistry, Ag abundance and regional distribution etc., Ag-bearing formations in Jibei area are divided into (1) Palaeo-Proterozoic metamorphic rock formation; (2) Middle Proterovoic carbonate rock formation of Gaoyuzhuang stage; (3) Mesozoic volcanic rock formation of Zhangjiakou period, Late Jurassic period of Zhangjiakou stage. Regional geochenical feature of the formations are revealed by 15 elements (Ag, Au, Cu, Pb, Zn, Mn, W, Ni, Sn, Cr, B, Ti, V, Mo, Co) quantitative anatysis, R-type cluster analysis, factor analysis and correlative matrix analysis. Regional metallogenic model for the formations is established according to researches on the regional geological history, stratgraphic sequency, isotopic chronology and the combination of tectonics-metamorphism-magmatism-volcanism. Silver ore prospects are predicted.

Key words: Ag-bearing rock formation type; regional geochemical feature; regional metallogenic model; predicted prospects; Jibei area.